109 research outputs found

    Second-line treatment of pediatric patients with relapsed rhabdomyosarcoma adapted to initial risk stratification: Data of the European Soft Tissue Sarcoma Registry (SoTiSaR).

    Get PDF
    BACKGROUND Outcome of relapsed disease of localized rhabdomyosarcoma remains poor. An individual treatment approach considering the initial systemic treatment and risk group was included in the Cooperative Weichteilsarkom Studiengruppe (CWS) Guidance. METHODS Second-line chemotherapy (sCHT) ACCTTIVE based on anthracyclines (adriamycin, carboplatin, cyclophosphamide, topotecan, vincristine, etoposide) was recommended for patients with initial low- (LR), standard- (SR), and high-risk (HR) group after initial treatment without anthracyclines. TECC (topotecan, etoposide, carboplatin, cyclophosphamide) was recommended after initial anthracycline-based regimen in the very high-risk (VHR) group. Data of patients with relapse (n = 68) registered in the European Soft Tissue Sarcoma Registry SoTiSaR (2009-2018) were retrospectively analyzed. RESULTS Patients of initial LR (n = 2), SR (n = 16), HR (n = 41), and VHR (n = 9) group relapsed. sCHT consisted of ACCTTIVE (n = 36), TECC (n = 12), or other (n = 15). Resection was performed in 40/68 (59%) patients and/or radiotherapy in 47/68 (69%). Initial risk stratification, pattern/time to relapse, and achievement of second complete remission were significant prognostic factors. Microscopically incomplete resection with additional radiotherapy was not inferior to microscopically complete resection (p = .17). The 5-year event-free survival (EFS) and overall survival (OS) were 26% (±12%) and 31% (±14%). The 5-year OS of patients with relapse of SR, HR, and VHR groups was 80% (±21%), 20% (±16%), and 13% (±23%, p = .008), respectively. CONCLUSION Adapted systemic treatment of relapsed disease considering the initial risk group and initial treatment is reasonable. New treatment options are needed for patients of initial HR and VHR groups

    Genetic Variation in ABCC4 and CFTR and Acute Pancreatitis during Treatment of Pediatric Acute Lymphoblastic Leukemia

    Get PDF
    Background: Acute pancreatitis (AP) is a serious, mechanistically not entirely resolved side effect of L-asparaginase-containing treatment for acute lymphoblastic leukemia (ALL). To find new candidate variations for AP, we conducted a genome-wide association study (GWAS). Methods: In all, 1,004,623 single-nucleotide variants (SNVs) were analyzed in 51 pediatric ALL patients with AP (cases) and 1388 patients without AP (controls). Replication used independent patients. Results: The top-ranked SNV (rs4148513) was located within the ABCC4 gene (odds ratio (OR) 84.1; p = 1.04 × 10−14). Independent replication of our 20 top SNVs was not supportive of initial results, partly because rare variants were neither present in cases nor present in controls. However, results of combined analysis (GWAS and replication cohorts) remained significant (e.g., rs4148513; OR = 47.2; p = 7.31 × 10−9). Subsequently, we sequenced the entire ABCC4 gene and its close relative, the cystic fibrosis associated CFTR gene, a strong AP candidate gene, in 48 cases and 47 controls. Six AP-associated variants in ABCC4 and one variant in CFTR were detected. Replication confirmed the six ABCC4 variants but not the CFTR variant. Conclusions: Genetic variation within the ABCC4 gene was associated with AP during the treatment of ALL. No association of AP with CFTR was observed. Larger international studies are necessary to more conclusively assess the risk of rare clinical phenotypes

    <i>MYCN</i> amplification drives an aggressive form of spinal ependymoma

    Get PDF
    Spinal ependymal tumors form a histologically and molecularly heterogeneous group of tumors with generally good prognosis. However, their treatment can be challenging if infiltration of the spinal cord or dissemination throughout the central nervous system (CNS) occurs and, in these cases, clinical outcome remains poor. Here, we describe a new and relatively rare subgroup of spinal ependymal tumors identified using DNA methylation profiling that is distinct from other molecular subgroups of ependymoma. Copy number variation plots derived from DNA methylation arrays showed MYCN amplification as a characteristic genetic alteration in all cases of our cohort (n = 13), which was subsequently validated using fluorescence in situ hybridization. The histological diagnosis was anaplastic ependymoma (WHO Grade III) in ten cases and classic ependymoma (WHO Grade II) in three cases. Histological re-evaluation in five primary tumors and seven relapses showed characteristic histological features of ependymoma, namely pseudorosettes, GFAP- and EMA positivity. Electron microscopy revealed cilia, complex intercellular junctions and intermediate filaments in a representative sample. Taking these findings into account, we suggest to designate this molecular subgroup spinal ependymoma with MYCN amplification, SP-EPN-MYCN. SP-EPN-MYCN tumors showed distinct growth patterns with intradural, extramedullary localization mostly within the thoracic and cervical spine, diffuse leptomeningeal spread throughout the whole CNS and infiltrative invasion of the spinal cord. Dissemination was observed in 100% of cases. Despite high-intensity treatment, SP-EPN-MYCN showed significantly worse median progression free survival (PFS) (17 months) and median overall survival (OS) (87 months) than all other previously described molecular spinal ependymoma subgroups. OS and PFS were similar to supratentorial ependymoma with RELA-fusion (ST-EPN-RELA) and posterior fossa ependymoma A (PF-EPN-A), further highlighting the aggressiveness of this distinct new subgroup. We, therefore, propose to establish SP-EPN-MYCN as a new molecular subgroup in ependymoma and advocate for testing newly diagnosed spinal ependymal tumors for MYCN amplification

    A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era.

    Get PDF
    Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on blastomas, which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account

    Forschung zu Seltenen Erkrankungen in Deutschland - Das KrebsprÀdispositionssyndrom-Register

    Get PDF
    Hintergrund: KrebsprĂ€dispositionssyndrome (KPS) sind seltene Erkrankungen, die auf Grund von genetischen VerĂ€nderungen mit einem erhöhten Krebsrisiko einhergehen. Mindestens 8 % aller Krebserkrankungen im Kindesalter sind auf ein KPS zurĂŒckzufĂŒhren [1, 2]. 2017 wurde das KPS-Register eröffnet, um mehr ĂŒber KPS zu lernen und um die Betreuung Betroffener zu verbessern. Methode: Es handelt sich um ein international vernetztes Register sowie daran angegliederte Begleitstudien, die die Krebsrisiken und -spektren, die Möglichkeiten der KrebsprĂ€vention und -frĂŒherkennung sowie der -therapie untersuchen. Ergebnisse: FĂŒr mehrere KPS wurden neue Erkenntnisse zu Krebsrisiken und Krebsarten sowie zu Faktoren, die das Krebsrisiko modifizieren, erworben. Zudem wurden experimentelle, psychoonkologische sowie prĂ€klinische und klinische Studien ins Leben gerufen. Schlussfolgerungen: Das KPS-Register ist ein Beispiel dafĂŒr, wie fĂŒr Menschen mit Seltenen Erkrankungen innerhalb kurzer Zeit durch systematische Datensammlung und Forschung Fortschritte erzielt werden können

    Genotype–phenotype associations within the Li-Fraumeni spectrum: a report from the German Registry

    Get PDF
    Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by pathogenic TP53 variants. The condition represents one of the most relevant genetic causes of cancer in children and adults due to its frequency and high cancer risk. The term Li-Fraumeni spectrum reflects the evolving phenotypic variability of the condition. Within this spectrum, patients who meet specific LFS criteria are diagnosed with LFS, while patients who do not meet these criteria are diagnosed with attenuated LFS. To explore genotype–phenotype correlations we analyzed 141 individuals from 94 families with pathogenic TP53 variants registered in the German Cancer Predisposition Syndrome Registry. Twenty-one (22%) families had attenuated LFS and 73 (78%) families met the criteria of LFS. NULL variants occurred in 32 (44%) families with LFS and in two (9.5%) families with attenuated LFS (P value < 0.01). Kato partially functional variants were present in 10 out of 53 (19%) families without childhood cancer except adrenocortical carcinoma (ACC) versus 0 out of 41 families with childhood cancer other than ACC alone (P value < 0.01). Our study suggests genotype–phenotype correlations encouraging further analyses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-022-01332-1

    Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

    Get PDF
    BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario

    Nuclear astrophysics: the unfinished quest for the origin of the elements

    Get PDF
    Half a century has passed since the foundation of nuclear astrophysics. Since then, this discipline has reached its maturity. Today, nuclear astrophysics constitutes a multidisciplinary crucible of knowledge that combines the achievements in theoretical astrophysics, observational astronomy, cosmochemistry and nuclear physics. New tools and developments have revolutionized our understanding of the origin of the elements: supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; cosmochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, through the combined efforts using stable and radioactive ion beam facilities. This review provides comprehensive insight into the nuclear history of the Universe and related topics: starting from the Big Bang, when the ashes from the primordial explosion were transformed to hydrogen, helium, and few trace elements, to the rich variety of nucleosynthesis mechanisms and sites in the Universe. Particular attention is paid to the hydrostatic processes governing the evolution of low-mass stars, red giants and asymptotic giant-branch stars, as well as to the explosive nucleosynthesis occurring in core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae, X-ray bursts, superbursts, and stellar mergers.Comment: Invited Review. Accepted for publication in "Reports on Progress in Physics" (version with low-resolution figures
    • 

    corecore