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Abstract: Background: Acute pancreatitis (AP) is a serious, mechanistically not entirely resolved
side effect of L-asparaginase-containing treatment for acute lymphoblastic leukemia (ALL). To
find new candidate variations for AP, we conducted a genome-wide association study (GWAS).
Methods: In all, 1,004,623 single-nucleotide variants (SNVs) were analyzed in 51 pediatric ALL
patients with AP (cases) and 1388 patients without AP (controls). Replication used independent
patients. Results: The top-ranked SNV (rs4148513) was located within the ABCC4 gene (odds ratio
(OR) 84.1; p = 1.04 × 10−14). Independent replication of our 20 top SNVs was not supportive of initial
results, partly because rare variants were neither present in cases nor present in controls. However,
results of combined analysis (GWAS and replication cohorts) remained significant (e.g., rs4148513;
OR = 47.2; p = 7.31 × 10−9). Subsequently, we sequenced the entire ABCC4 gene and its close relative,
the cystic fibrosis associated CFTR gene, a strong AP candidate gene, in 48 cases and 47 controls. Six
AP-associated variants in ABCC4 and one variant in CFTR were detected. Replication confirmed
the six ABCC4 variants but not the CFTR variant. Conclusions: Genetic variation within the ABCC4
gene was associated with AP during the treatment of ALL. No association of AP with CFTR was
observed. Larger international studies are necessary to more conclusively assess the risk of rare
clinical phenotypes.

Keywords: acute lymphoblastic leukemia; L-asparaginase; acute pancreatitis; polymorphism; SNV;
ABCC4; CFTR

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and
represents approximately 25% of cancers and 80% of all leukemias diagnosed in children
and adolescents [1,2]. Contemporary treatment extends over a period of 2 to 3 years and
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usually consists of combination chemotherapy, which is substituted in small proportions of
patients by cranial irradiation or allogeneic hematopoietic stem cell transplantation [3,4].
Timely application of therapy is important to secure optimal treatment effect and outcome
but is often compromised by undesired side effects leading to treatment interruptions.
Early severe side effects related to the treatment of ALL encompass a variety of specific com-
plications, such as bacterial, viral, and fungal infections; hemostaseological problems; and
side effects that can be attributed to specific drugs [5]. Examples of drug-specific toxicities
observed during the treatment of ALL are methotrexate-related encephalopathy, steroid-
treatment-related avascular bone necrosis, topoisomerase-II-associated secondary acute
myeloid leukemia, and acute pancreatitis (AP) developing in the context of L-asparaginase
(L-asp) application [6–10].

The mechanism of action of L-asp is the depletion of the extracellular amino acid
asparagine by the hydrolysis of asparagine to aspartic acid and ammonia. The depletion
results in the inhibition of protein synthesis by malignant cells, such as lymphoblasts,
leading to cell death due to the inability to synthesize endogenous asparagine. L-asp
used for the treatment of ALL is derived from either Escherichia coli (E. coli) (native or
PEGylated L-asp) or Erwinia chrysanthemi [7,8,11], both being associated with AP. The
mechanism of AP in association with L-asp is poorly understood. Although L-asp is
believed to be the main reason for developing AP, other cytotoxic chemotherapeutics,
including 6-mercaptopurine, glucocorticoids, and cytarabine, have been associated with
AP, as well [12–15]. Suggested published risk factors for developing AP associated with
L-asp treatment include, for example, higher age at diagnosis, acute hypertriglyceridemia,
and genetic polymorphisms [11,16–18]. Support for an underlying genetic predisposition
comes from the observation that a few applications of L-asp are sufficient to initiate AP
and that there is a high probability of recurrence after re-exposure to L-asp [11].

So far, genetic linkage and candidate gene studies have identified several genes
(e.g., PRSS1, PRSS2, SPINK1, CTRC, CASR, and CFTR) that could be associated with chronic,
hereditary, and hyperlipidemic pancreatitis. Until recently, no specific loci associated with
AP had been identified [11,16,19]. However, meanwhile, genome-wide association studies
(GWAS) have identified single-nucleotide variants in the genes CPA2, ULK2, and PRSS1 as
being associated with L-asp-associated AP in pediatric ALL [20–22]. Here, we present our
results from a GWAS on the etiology of AP in childhood ALL by comparing 51 patients
with AP to 1388 control patients without symptoms of AP.

2. Materials and Methods
2.1. Study Individuals

Patients included in this study were 1 to 18 years of age and enrolled in the European
AIEOP-BFM ALL 2000 multicenter clinical trial on the treatment of pediatric ALL conducted
in Austria, Germany, Italy, and Switzerland [23,24]. Diagnostics and treatment in AIEOP-
BFM ALL 2000 have been described previously [23–27]. Briefly, the AIEOP-BFM ALL
2000 patients were stratified into three branches (standard, intermediate, and high risk).
Risk group stratification included minimal residual disease (MRD) analysis and required
two MRD targets with sensitivities of ≤10−4. Standard-risk patients were MRD-negative
on treatment days 33 (TP1) and 78 (TP2) and had no high-risk criteria. High-risk patients
had residual disease (≥10−3) at TP2. MRD-intermediate-risk patients had positive MRD
detection at either one or both time points but at a level of <10−3 at TP2. Although MRD
analysis was the main stratification criterion in AIEOP-BFM ALL 2000, established high-
risk parameters were also retained: patients with a poor response to prednisone or ≥5%
leukemic blasts in the bone marrow on day 33 or positivity for a t(9;22) or t(4;11) or their
molecular equivalents (BCR-ABL1 or MLL-AF4 gene fusions) were stratified into the high-
risk group independent of their MRD results. Treatment details of AIEOP-BFM ALL 2000
are given in Table S1.

Diagnosis of AP was based on the presence of two of the following three clinical
symptoms [28]: (1) abdominal pain consistent with acute pancreatitis (acute onset of a
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persistent, severe, epigastric pain often radiating to the back), (2) serum lipase activity
(or amylase activity) at least three times greater than the upper limit of normal, and (3)
characteristic findings of AP on abdominal computed tomography, magnetic resonance
imaging, or transabdominal ultrasonography or surgical findings consistent with AP.

2.2. DNA Isolation

During the course of treatment, bone marrow and/or blood samples were collected for
remission evaluation at defined time points. Morphologically leukemia-cell-free samples
with MRD levels of ≤10−3 were selected from these time points and used for DNA isolation
using previously described standard techniques [26,27,29]. DNA yielded by this procedure
was regarded as a germline DNA surrogate.

2.3. Single-Nucleotide Variant (SNV) Genotyping for Genome-Wide Screening

The GWAS was conducted in 54 childhood ALL patients with AP (cases) and 1435 pa-
tients without AP (controls). DNA was genotyped using Human1M-Duo BeadChips
(Illumina, San Diego, CA, USA) containing 1,048,711 SNV markers. To avoid false positive
data, 44,088 SNVs were excluded due to poor call rate (CR) (<95%) and/or deviation
from Hardy–Weinberg equilibrium in the controls (p > 0.001). Furthermore, 37 patients
(cases/controls) were excluded due to poor genotyping (CR < 95%) and cryptical rela-
tionship (IBS-distance > 0.8). Additionally, a multidimensional scaling analysis (MDS)
identified 13 patients (cases/controls) with a non-European background. These subjects
were also excluded from the study (Figure S1). The quality control finally resulted in a
cohort size of 51 cases and 1388 controls.

Two methodological approaches were used to identify candidate SNVs for AP in
this GWAS. First, only SNVs with a p-value smaller than 1 × 10−7, a minimum of one
genotyping call in each group of cases and controls, and no restriction of minor allele
frequency (MAF) were included. The second approach differed from the first by only
including those SNVs with a MAF of more than 0.5%. Minimal evidence of an overall
inflation of the test statistics due to population stratification with a moderate genomic
inflation factor (approach 1: λ = 1.09; approach 2: λ = 1.10) was found (Figure S2).

To confirm the top 20 SNVs from the GWAS, a replication analysis was conducted in
an independent patient set of 54 AP cases (selected from both ALL BFM 2000 and AIEOP
BFM ALL 2009 study cohorts) and 225 controls (patients with no history of AP from the
ALL BFM 2000 cohort). Candidate SNVs were genotyped using the SNVlex multiplex and
TaqMan technology (Applied Biosystems, Foster City, CA, USA).

2.4. Gene Sequencing

To fine-map ATP-binding cassette sub-family C member 4 (ABCC4); 281,605 base pairs)
and to evaluate the ABCC4-related cystic fibrosis conductance regulator (CFTR); 188,702 base
pairs) gene as a candidate for AP predisposition, the two genes were completely sequenced
in a cohort of 48 cases and 47 controls selected from the above-described GWAS and repli-
cation cohorts depending on the availability of sufficient amounts of non-malignant DNA.
Next-generation sequencing (NGS) was conducted on a HiSeq2000 platform (Illumina)
using the HaloPlex Illumina 100 kit (Agilent Technologies, Santa Clara, CA, USA) according
to the manufacturer’s recommendations. The reads were mapped against the human refer-
ence genome build hg19 using BWA [30], sorted, converted to bam format, and indexed
with SAMtools [31]. Local realignment around InDels and base quality score recalibration
were performed with the GATK [32] according to their best practice recommendations, fol-
lowed by variant calling and variant quality score recalibration. Data were analyzed using
the program Integrative Genomic Viewer version 2.3.25 (www.broadinstitute.org/igv/ (ac-
cessed on 20 October 2021)) [33,34]. For identification of potential candidate SNVs, regions
with a poor sequencing rate (<90%) were excluded. Follow-up SNVs in independent pa-
tients from ALL BFM 2000 and AIEOP BFM ALL 2009 with available non-malignant DNA
(most of which were part of the initial GWAS and replication cohorts) were analyzed by a

www.broadinstitute.org/igv/
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Sanger sequencing using an automated fluorescent sequencer (Applied Biosystems 3730xl
DNA Analyzer). All data referring to chromosomal positions were based on GRCh37/hg19
assembly.

2.5. Plotting

Regional association plots were created for the GWAS SNVs using a modified version
of deBakker’s R script (Figure 1, Figures S3 and S4) by using GWAS SNVs as well as
imputed SNVs (if possible). The imputation was done using gPLINK version 2.050 in
combination with PLINK v1.07 (www.pngu.mgh.harvard.edu/purcell/plink/ (accessed
on 20 October 2021)) [35]. For this purpose, genotypes of autosomal SNVs based on data
of 1000 genomes were used. As an input for imputation, only SNVs from the GWAS that
passed the above-mentioned quality controls were included.
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Figure 1. Regional plots of the loci ABCC4, FGF10, and ASPG. Plots of the negative decadic logarithm
of the combined p-values obtained in the GWAS are shown. The data were imputed with CEU
haplotypes generated by the 1000 Genomes Project (August 2010 release) as a reference. A window
of ±500 kb around the lead SNVs (blue solid diamonds) is indicated. The magnitude of the linkage
disequilibrium with the central SNV measured by r2 is reflected by the color of each SNV symbol
(color coding: see the upper-right corner of the plot). Recombination activity (in centimorgans (cM)
per Mb) is depicted by a blue line. Positions are given as NCBI’s build coordinates.
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2.6. Statistical Analyses

Associations between patient characteristics were evaluated using Fisher’s exact or
χ2-tests. The GWAS was assessed using gPLINK. Associations of variations detected by
NGS and the replication analyses in the respective cohorts used unconditional logistic
regression analysis or Fisher’s exact test. Quality control and identity-by-state analysis of
the GWAS data was evaluated by gPLINK and R statistics version 2.15.1 (www.r-project.org
(accessed on 20 October 2021)). To estimate the European ancestry of the GWAS cohort, the
multidimensional scaling analysis was evaluated using R statistics with HapMap CEU, YRI,
and JRT/CHB cohorts as reference ancestral populations. Computations were performed
using IBM SPSS statistics (IBM Corp., Version 21.0.0, Armonk, NY, USA) and R statistics.

3. Results
3.1. GWAS-Based Identification and Replication of Genomic SNVs Associated with AP

In our GWAS cohort, the incidence of AP was 3.6%, which was in the range of the
reported incidence of childhood-ALL-therapy-associated pancreatitis (0.7–18%) [6,7,10].
One previously described clinical risk factor associated with AP development during the
treatment of childhood ALL is higher patient age, which was also observed in our analysis
(Table 1) [7,11,17,18]. No significant associations of AP with the treatment risk group were
detected (Table 1).

Table 1. Clinical characteristics of 1439 patients with ALL from trial AIEOP-BFM ALL 2000 (GWAS cohort) according to the
acute pancreatitis (AP) status.

Patients with AP Patients without AP
p-Value d

(n = 51) n (%) (n = 1388) n (%)

Gender
Male 32 (62.7) 792 (57.1)

Female 19 (37.3) 596 (42.9) 0.42

Age at diagnosis (years)
1–6 19 (37.2) 755 (54.4)

6 to <10 9 (17.6) 248 (17.9)
≥10 23 (45.1) 385 (27.7) 0.02

Initial WBC a (µL)
<10,000 21 (41.2) 579 (41.7)

10,000–20,000 11 (21.6) 220 (15.9)
20,000–50,000 7 (13.7) 242 (17.4)

≥50,000 12 (23.5) 347 (25.0) 0.70

Immunophenotype
B 37 (72.5) 1065 (76.7)
T 14 (27.5) 304 (21.9) 0.56

Other/unknown 0 19 (1.4)

Treatment risk group
Standard 13 (25.5) 418 (30.1)

Intermediate 25 (49.0) 723 (52.1)
High 13 (25.5) 246 (17.7) 0.37

Unknown 0 1 (0.1)

ETV6/RUNX1
Neg 45 (88.2) 1149 (82.8)
Pos 1 (2.0) 94 (6.8) 0.25

Unknown 5 (9.8) 145 (10.4)

www.r-project.org
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Table 1. Cont.

Patients with AP Patients without AP
p-Value d

(n = 51) n (%) (n = 1388) n (%)

BCR/ABL
Neg 50 (98.0) 1304 (93.9)
Pos 1 (2.0) 24 (1.7) 0.26

Unknown 0 60 (4.3)

MLL rearrangement
Neg 46 (90.2) 1213 (87.4)
Pos 0 4 (0.3) 0.85

Unknown 5 (9.8) 171 (12.3)

Prednisone response c

Good 43 (84.3) 1201 (86.5)
Poor 8 (15.7) 174 (12.5) 0.70

Unknown 0 13 (0.9)

DNA index b

<1.16 24 (47.1) 651 (46.9)
≥1.16 2 (7.7) 158 (11.4) 0.21

Unknown 25 (49.0) 579 (41.7)

Timepoint of AP diagnosis e,f

Induction/consolidation (weeks 1–10) 30 (58.8) –
CNS-directed therapy (weeks 12–20) 5 (9.8) –

Re-induction (weeks 22–28) 16 (31.4) – –
a WBC, white blood cell count at diagnosis. b Ratio of DNA content of leukemic G0/G1 cells to normal diploid lymphocytes. c Good:
<1000 leukemic blood blasts/µL on treatment day 8; poor: ≥1000 µL−1. d χ2—or Fisher’s exact test. e L-asparaginase application during
induction/consolidation and re-induction. f Only a few patients (<10%) developed AP after the first dose of L-asp. The majority of cases
(>80%) were of severe phenotype [28], and L-asp activity levels were not available for most of them.

As mentioned above, our study used two methodological approaches to detect po-
tential associations for developing AP. In the first approach, six SNVs fulfilled the prede-
fined criteria for significance (Table 1; Figure 1 and Figure S3). An intronic SNV in the
ABCC4 gene (rs4148513) demonstrated the strongest association with AP (p = 1.04 × 10−14;
OR = 84.09) (Figure 1; Table 2). Of interest, besides rs4148513, another SNV in ABCC4 was
independently and highly associated with AP in the GWAS (rs4148500; p = 7.23 × 10−6)
(Table 2). Other genes with significant associations in the first GWAS approach included
SEMA3D, C15orf41, COG5, ST7, and UPF1.

In the second approach, 13 highly significant SNVs were identified (Table 3; Figure 1
and Figure S4). The SNV with the strongest association (rs6858970) was detected close to
the fibroblast growth factor 10 (FGF10) gene (p = 6.26 × 10−8; OR = 8.61) (Figure 1; Table 3).
Another highly associated SNV in this approach was rs737394 (p = 1.59 × 10−7; OR = 3.19),
an SNV located on an intronic region of the asparaginase homolog (S. cerevisiae) (ASPG) gene
(Figure 1; Table 3)). Other SNVs identified by the second approach were located on or in
the vicinity of genes associated with mechanisms and pathways such as cell growth, cell
differentiation, and cell death (Table 3).
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Table 2. Top SNVs associated with AP identified by genome-wide association analysis and replicated by Sanger sequencing: approach 1.

Chr.
Position

(bp)
dbSNP ID

Nearby
Genes

(Relative
Position)

A1/A2

Genome-Wide Association Study Replication Combined Analysis GWAS + Replication
1388 Controls 225 Controls 1613 Controls

51 Cases 54 Cases 105 Cases

AFA1 Contr. OR AFA1 Contr. OR AFA1 Contr. OR
AFA1 Cases (95% CI) p-Value a AFA1 Cases (95% CI) p-Value a AFA1 Cases (95% CI) p-Value a

13 rs4148513 ABCC4 A/G 0.0004 84.09 0 NA 0.0003 47.20
95790353 (within

gene) 0.0294 (8.67–815.6) 1.04 × 10−14 0 NA 0.0144 (4.89–455.70) 7.31 × 10−9

7 rs17160216 SEMA3D G/A 0.0007 42.03 0.0022 NA 0.0009 15.72
85465201 (±714 kb) 0.0294 (6.95–254.4) 8.28 × 10−12 0 0.63 0.0144 (3.15–78.38) 6.29 × 10−6

15 rs698457 C15orf41 G/T 0.0032 15.85 0.0022 4.26 0.0031 9.55
36372995 (±499 kb) 0.0490 (5.21–48.17) 6.75 × 10−11 0.0094 (0.26–68.62) 0.27 0.0289 (3.44–26.53) 1.27 × 10−7

7 rs6963190 COG5 T/C 0.0022 18.84 0.0022 4.28 0.0022 11.33
106850181 (within

gene) 0.0392 (5.23–67.85) 4.21 × 10−10 0.0094 (0.26–68.92) 0.26 0.0240 (3.56–36.00) 2.22 × 10−7

7 rs7804397 ST7 T/G 0.0011 28.01 0 NA 0.0009 15.72
116857547 (within

gene) 0.0294 (5.58–140.50) 7.23 × 10−10 0 NA 0.0144 (3.15–78.38) 6.29 × 10−6

19 rs2238652 UPF1 T/C 0.0011 28.01 0.0022 4.20 0.0012 15.64
18942559 (within

gene) 0.0294 (5.58–140.50) 7.23 × 10−10 0.0093 (0.26–67.63) 0.27 0.0191 (3.88–62.99) 2.12 × 10−7

13 rs4148500 ABCC4 T/C 0.0040 10.26 0.0067 NA 0.0043 4.50
95818288 (within

gene) 0.0392 (3.21- 32.79) 7.23 × 10−6 0 0.40 0.0192 (1.47–13.79) 3.94 × 10−3

Abbreviations: A1, minor allele; A2, major allele; AF, allele frequency; Chr., chromosome; CI, confidence interval; NA, not analyzed; OR, odds ratio. a Allele-based χ2-test (1 degree of freedom); chromosomal
location is based on hg19.
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Table 3. Top SNVs associated with AP identified by genome-wide association analysis and replicated by Sanger sequencing: approach 2.

Chr.
Position

(bp)
dbSNP ID

Nearby
Genes

(Relative
Position)

A1/A2

Genome-Wide Association Study Replication Combined Analysis GWAS +
Replication

1388 Controls 225 Controls 1613 Controls
51 Cases 54 Cases 105 Cases

AFA1
Contr. OR AFA1

Contr. OR AFA1
Contr. OR

AFA1 Cases (95% CI) p-Value a AFA1 Cases (95% CI) p-Value a AFA1 Cases (95% CI) p-Value a

5 rs6858970 FGF10 T/G 0.0072 8.61 0.0111 0.85 0.0078 4.46
44005497 (±300 kb) 0.0588 (3.38–21.93) 6.26 × 10−8 0.0094 (0.10–7.33) 0.88 0.0337 (1.90–10.43) 1.64 × 10−4

1 rs12402476 SPAG17 A/G 0.0072 8.61 0.0089 1.06 0.0074 4.64
118847717 (±120 kb) 0.0588 (3.38–21.92) 6.34 × 10−8 0.0094 (0.12–9.60) 0.96 0.0337 (1.98–10.91) 1.08 × 10−4

19 rs34282745 ZNF154 C/T 0.0382 4.34 0.0422 0.89 0.0388 2.49

58214147 (within
gene) 0.1471 (2.42–7.77) 7.40 × 10−8 0.0377 (0.30–2.67) 0.83 0.0914 (1.51–4.13) 2.44 × 10−4

14 rs737394 ASPG C/A 0.1013 3.19 0.1000 0.73 0.1011 1.80

104505922 (within
gene) 0.2647 (2.02–5.04) 1.59 × 10−7 0.0755 (0.34–1.61) 0.44 0.1683 (1.23–2.63) 2.22 × 10−3

7 rs2214632 ZNF804B A/G 0.178 2.86 0.1622 0.72 0.1758 1.56

88513041 (within
gene) 0.3824 (1.90–4.31) 1.80 × 10−7 0.1226 (0.38–1.36) 0.31 0.2500 (1.13–2.17) 6.49 × 10−3

11 rs7480329 ADAMTS8 A/G 0.0490 3.88 0.0400 0.46 0.0477 2.01
130264278 (±10.5 kb) 0.1667 (2.24–6.72) 1.97 × 10−7 0.0189 (0.11–2.02) 0.29 0.0914 (1.22–3.30) 5.32 × 10−3

4 rs17658514 SH3RF1 T/C 0.0328 4.31 0.0378 0.48 0.0335 2.22

170030472 (within
gene) 0.1275 (2.32–8.00) 4.94 × 10−7 0.0185 (0.11–2.11) 0.32 0.0714 (1.27–3.88) 4.16 × 10−3

4 rs13118066 SH3RF1 C/A 0.0328 4.3 0.0378 0.49 0.0335 2.24

170092033 (within
gene) 0.1275 (2.32–7.99) 5.02 × 10−7 0.0189 (0.11–2.15) 0.34 0.0721 (1.28–3.92) 3.72 × 10−3

9 rs7026867 ASTN2 C/A 0.0083 7.48 0.0044 NA 0.0078 3.80

120052359 (within
gene) 0.0588 (2.98–18.80) 5.19 × 10−7 0 0.49 0.0289 (1.54–9.38) 1.82 × 10−3

17 rs16942475 HOXB7 C/T 0.0422 3.92 0.0622 0.73 0.0450 2.24

46688371 (within
gene) 0.1471 (2.20–6.98) 6.65 × 10−7 0.0463 (0.28–1.94) 0.53 0.0952 (1.37–3.65) 9.67 × 10−4
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Table 3. Cont.

Chr.
Position

(bp)
dbSNP ID

Nearby
Genes

(Relative
Position)

A1/A2

Genome-Wide Association Study Replication Combined Analysis GWAS +
Replication

1388 Controls 225 Controls 1613 Controls
51 Cases 54 Cases 105 Cases

AFA1
Contr. OR AFA1

Contr. OR AFA1
Contr. OR

AFA1 Cases (95% CI) p-Value a AFA1 Cases (95% CI) p-Value a AFA1 Cases (95% CI) p-Value a

4 rs798752 TMEM129 A/C 0.0177 5.36 0.0200 0.47 0.0181 2.75

1720312 (within
gene) 0.0882 (2.56–11.24) 6.83 × 10−7 0.0094 (0.06–3.72) 0.46 0.0481 (1.38–5.46) 2.63 × 10−3

9 rs6560001 DAPK1 C/T 0.1445 2.83 0.1556 1.04 0.1460 1.85

90169981 (within
gene) 0.3235 (1.85–4.35) 6.92 × 10−7 0.1604 (0.58–1.85) 0.90 0.2404 (1.33–2.58) 2.35 × 10−4

12 rs17837141
* CLLU1 C/A 0.0144 5.82 – – – –

92833965 (±9.2 kb) 0.0784 (2.65–12.77) 7.19 × 10−7 – – – – – –

Abbreviations: A1, minor allele; A2, major allele; AF, allele frequency; Chr., chromosome; CI, confidence interval; NA, odds ratio cannot be estimated; OR, odds ratio. a Allele-based χ2-test (1 degree of freedom); *
validation analysis of rs17837141 failed; chromosomal location is based on hg19. Replication analysis for the seven SNVs from NGS involved independent patients from ALL BFM 2000 and AIEOP BFM ALL 2009
(n = 45 cases; n = 45 controls) with available non-malignant DNA (most of which were part of the initial GWAS and replication cohorts). While for ABCC4, six variants demonstrated a tentative confirmatory
behavior in replication analyses, leading to improved significance levels in combined analyses of initial discovery and replication sets, the CFTR SNV did not (Table 4). Five out of six variants localized on ABCC4
had a p-value of 2.4 × 10−2 or less, although one has to acknowledge that four of these variants were highly linked to each other through LD. The most significant variant (rs4773862) had a p-value of 1.3 × 10−2,
with 14 alleles present in the case group and 3 in controls.
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Table 4. Top ABCC4 and CFTR SNVs associated with AP identified through next-generation sequencing and replication analysis by Sanger sequencing.

Gene Variant A1/A2

Next-Generation Sequencing (Initial) Sanger (Replication) Combined Analysis (Initial + Replication)

Allelescontrols
(A1/A2) OR Allelescontrols

(A1/A2) OR Allelescontrols
(A1/A2) OR

Allelescases
(A1/A2) (95% CI) p-Value a Allelescases

(A1/A2) (95% CI) p-Value a Allelescases
(A1/A2) (95% CI) p-Value a

ABCC4 rs34839857 GA/G (7/81) 3.33 (8/64) 1.40 (15/145) 2.28
(21/73) (1.34–8.29) 0.01 (11/63) (0.53–3.70) 0.50 (32/136) (1.18–4.39) 0.01

ABCC4 rs4773864 T/C (2/90) 4.66 (1/78) 3.85 (3/165) 4.33
(9/87) (0.98–22.16) 0.05 (4/78) (0.42–35.21) 0.23 (13/165) (1.21–15.49) 0.02

ABCC4 rs4773862 T/C (2/92) 4.76 (1/81) 5.4 (3/173) 4.98
(9/87) (1.00–22.64) 0.05 (5/75) (0.62–47.29) 0.13 (14/162) (1.41–17.66) 0.01

ABCC4 rs2027444 T/C (2/92) 4.76 (1/81) 5.13 (3/173) 4.86
(9/87) (1.00–22.64) 0.05 (5/79) (0.59–44.87) 0.14 (14/166) (1.37–17.23) 0.01

ABCC4 rs79230687 G/A (2/92) 4.76 (1/81) 5.14 (3/173) 4.86
(9/87) (1.00–22.64) 0.05 (5/79) (0.59–44.87) 0.14 (14/166) (1.37–17.23) 0.01

CFTR rs62469434 A/G (2/92) 5.95 (7/75) 0.54 (9/167) 1.69
(11/85) (1.28–27.64) 0.02 (4/80) (0.15–1.90) 0.34 (15/165) (0.72–3.96) 0.23

ABCC4 rs2389226 C/A or
T (2/92) 4.76 (1/79) 5.13 (3/171) 4.87

(9/87) (1.00–22.64) 0.05 (5/77) (0.59–44.92) 0.14 (14/164) (1.37–17.2) 0.01

CFTR rs55831234 G/A (0/90) NA (1/87) 1.93 (1/177) 4.89
(3/91) 0.25 * (2(90) (0.17–21.71) 0.59 (5/181) (0.57–42.27) 0.15

Abbreviations: A1, minor allele; A2, major allele; CI, confidence interval; NA, odds ratio cannot be estimated; OR, odds ratio. a Unconditional logistic regression analysis; * Fisher’s exact test, as logistic regression
analysis cannot be performed.



J. Clin. Med. 2021, 10, 4815 11 of 17

In total, 20 SNVs were detected by our two GWAS approaches. Six of them were found to
be located in intergenic regions, whereas 14 SNVs were discovered directly on a gene (Table 2,
Table 3, and Table S2). All of these 20 SNVs were genotyped in additional independent patient
samples (54 cases with AP and 225 controls without AP). However, none of the 20 SNVs
yielded significant results in replication experiments (Tables 2 and 3). The most significant
SNV of the GWAS from the first approach (rs4148513) was neither detected in an additional
case nor detected in an additional control individual.

3.2. SNVs from Candidate Gene Studies and GWAS

We investigated all SNVs present on our array platform that were located on or in the
vicinity of those genes previously associated with changes in susceptibility to pancreatitis,
including CFTR, CTRC, PRSS2, SPINK1, CASR, and the recently reported variants in AP-
associated carboxypeptidase A2-encoding gene CPA2, in unc-51 like autophagy activating kinase
2-encoding gene ULK2, and in serine protease 1-encoding gene PRSS1 [20–22] but could not
replicate any of the previously described significant associations (Table S3).

3.3. Fine-Mapping of Potential AP-Associated Variants by Sequencing the ABCC4 and
CFTR Genes

Out of the 20 SNVs, the 2 with the highest significance in the GWAS approach were
located on the ABCC4 gene. ABCC4 is a member of the superfamily of ATP-binding cassette
(ABC) transporters, which also includes CFTR. Since patients with cystic fibrosis are prone
to developing pancreatic problems, including pancreatitis, CFTR is a relevant candidate
gene for pancreatitis in non-CF patients. The relationship to ABCC4 as well as the candidate
gene status of CFTR for AP led us to include both genes, ABCC4 and CFTR, in a targeted
NGS-based sequencing approach applied to 48 cases with AP and 47 controls without AP.
In total, seven SNVs were significantly associated with AP according to the significance
criteria mentioned above (see Section 2; Table 4). All NGS-based SNVs with significant
associations were confirmed by Sanger sequencing. Six of the seven variants were located
on the ABCC4 gene and only one on the CFTR gene. One of the most significantly associated
variants was the insertion rs34839857 (p = 1.0 × 10−2) in ABCC4, with 21 alleles present
in the case group and 7 in controls. Results by genotype for the seven SNVs are given
in Table S4 (Table S5 demonstrates the below-described replication and Table S6 the joint
analysis of both cohorts used in fine-mapping analysis). Linkage disequilibrium (LD)
analyses are demonstrated in Tables S7 and S8. The top candidate SNV from the GWAS
showed no LD with any of the newly NGS identified ABCC4 SNVs.

4. Discussion

It is assumed that chemotherapeutic drugs (mainly L-asp) are the main trigger for AP
in the therapeutic course of childhood ALL [6–11,13,36]. In our analyses, we were able to
confirm higher age as a previously published risk factor for developing AP associated with
L-asp treatment (Table 1) [7,11,17,18]. In contrast, we did not detect significant associations
of AP with the treatment risk group. Several studies have analyzed the effect of risk
stratification for ALL treatment as a risk factor for AP with controversial results [36–38].
The observed positive associations are most likely explained by higher doses of L-asp being
applied in high-risk patients [36,37]. In comparison to standard- and intermediate-risk
patients, our high-risk patients also received higher cumulative doses of L-asp (Table S1).
Despite higher frequencies of AP in high-risk patients observed in our study, no significant
differences could be detected. This is most likely due to a lack of power in our relatively
small sample set.

In addition to demographic or clinical risk factors, there is evidence of genetic factors
contributing to the pathophysiology of AP as a severe treatment complication. In our first
GWAS approach with no restrictions on MAF, the strongest association was observed for
an SNV located on the ABCC4 gene. ABCC4 belongs to the ABC transporter superfamily,
which mediates the efflux of drugs and plays an important role in the development of
drug resistance. ABCC4 itself is known to mediate the transport of different chemothera-
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peutic drugs out of the cell (e.g., 6-mercaptopurine and methotrexate) [39–42]. Therefore,
variability in ABCC4 activity may affect pharmacokinetics of ABCC4 transport substrates
and consequently modulate drug effects. Of importance in the context of our findings,
ABCC4 is highly expressed in the pancreas [39,43]. In addition, in a recent study using
a rat model to study AP, Ventimiglia and colleagues described a protective role of atrial
natriuretic factor (ANF) mediated by cAMP extrusion through ABCC4 and suggested that
the regulation of ABCC4 by ANF could be relevant to maintaining pancreatic acinar cell
homeostasis [44].

The top-ranked SNV in our second GWAS approach, which included SNVs with
a MAF of more than 0.5%, was located in the vicinity of FGF10, a gene belonging to
the fibroblast growth factor family. Members of this group take part in the regulation
of cell growth and cell differentiation. In addition, the FGF-family is suspected to be
involved in pancreatic diseases such as pancreatic cancer, chronic pancreatitis, and acute
pancreatitis [45–47]. The FGF10 gene itself is required for the normal development of
the pancreas [47,48]. In a publication of Ishiwata et al., the authors proposed that FGF10
together with FGF7 may contribute to the regeneration and differentiation of acinar cells
and the angiogenesis of AP [49]. However, despite FGF10 being a plausible candidate for
a role in the pathophysiology of AP, our replication analysis did not support the initial
findings.

As mentioned above, one of the most serious adverse events of L-asp treatment is
AP. L-asp catalyzes the hydrolysis of asparagine into aspartate and ammonia. The human
genome encodes at least three enzymes that can catalyze this reaction, asparaginase homolog
(S. cerevisiae) (ASPG), aspartylglucosaminidase (AGA), and asparaginase like 1 (ASRGL1) [50].
Of interest, one SNV selected for further follow-up after our initial GWAS screen was
located on the gene ASPG. This little studied gene has sequence similarity at the N-terminal
domain with the E. coli types I and II asparaginase [51,52]. It has also been shown that
HEK293 cells exhibit asparaginase activity when they are transfected with the cDNA
of ASPG [53]. Although purely hypothetical, this initial finding, which did not hold in
replication analysis, may justify some follow-up investigations of ASPG activity in the
context of AP development.

We investigated all SNVs present on the GWAS SNV array that were located on or in
the vicinity of the genes known to be associated with changes in susceptibility to pancreatitis,
including CFTR, CTRC, PRSS2, SPINK1, and CASR, but did not find any significant association.
Therefore, these previously described candidate genes for chronic pancreatitis may not play
distinct roles in AP. However, we also failed to detect any association with CPA2, ULK2, and
PSSR1, three recently reported AP-associated genes [20–22] (Table S3). Regarding this, our
analyses may have been hampered by suboptimal SNV coverage of these candidates on
our array (e.g., CFTR: 140 SNVs in or ±50 kb up and downstream of the gene) and the
fact that hardly any of the few well-known SNVs previously associated with pancreatitis,
including the top CPA2 SNV, were actually present on our platform. LD information on
this CPA2 variant (rs199695765) could not be obtained, probably due to its rareness, so
there can be no conclusions drawn from CPA2 variants present on O1MQR. However, one
of the recently published PRSS1 variants was genotyped, showing no association to the AP
phenotype (as shown in Table S3). The other published variant is not present on O1MQR
but in perfect LD with the first one. The previously published ULK2 variant rs281366
was also not genotyped on O1MQR but Table S3 lists several SNVs, for example rs205111,
rs9895806, and rs9914674, that are highly linked to the published variant. In summary,
our GWAS setting could not replicate the associations of rare or common SNVs to the
phenotype of AP that was identified in previously published GWA studies.

Replication of the 20 top candidate SNVs from our GWAS was, unfortunately, not
successful. The reasons are manifold, including the fact that our GWAS included rare
variants with a low MAF. GWAS analyses often begin by discarding all genotypes for
SNVs with a MAF of less than 10%, which results in an enormous loss of data. Low-MAF
SNVs are associated with technical and statistical problems, such as lower genotyping
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rates and inflated false-positive results [53]. The decision to include rare alleles in our
analyses was based on the hypothesis that AP is a rare clinical phenotype and may be
associated with rare SNVs. From a methodological perspective on GWAS analyses, our
practical approach is supported by investigations demonstrating nominally significant
results occurring significantly less often than expected for low-MAF SNVs, resulting in a
conservative bias [54,55]. However, despite positive arguments to include SNVs of low
MAF, our replication cohorts may have been virtually too small to reliably detect enough
cases carrying rare variants. For example, the highest-ranked SNV in our GWAS (rs4148513)
occurred in three cases and one control only and was not detected in a single individual
of the entire validation cohort. Nevertheless, combined data from our GWAS and the
validation cohorts still demonstrated strong associations of initially identified candidate
variations with AP, supporting the assumption that the initially detected SNVs might truly
play a role in the development of AP.

Lending additional support to our findings from initial experiments, we conducted
fine-mapping of ABCC4 by sequencing the entire gene. ABCC4 was chosen because of our
GWAS findings and its simultaneous candidate status based on biological function (see above).
As a second candidate gene for pancreatitis, CFTR was chosen for sequencing [56–58]. CFTR
also belongs to the ABC transporter superfamily and plays a role in water and salt transport
at the plasma membrane of epithelial cells. Mutations in CFTR lead to cystic fibrosis (CF)
commonly affecting the lungs, liver, intestine, and pancreas [59]. Moreover, variants within
CFTR associated with pancreatitis were found in patients without additional symptoms of
CF [19,60]. CFTR as a genetic risk factor for AP and chronic pancreatitis was linked with
trypsin activation and survival in pancreatitis patients [60,61]. Of particular interest, in
replication analysis of seven candidate SNVs in ABCC4 and CFTR detected through NGS,
all six ABCC4 variants demonstrated similar effects regarding point estimates while the
CFTR SNV did not. Its consistent behavior in our different analytical approaches, including
genotype analysis, implies that ABCC4 might truly be associated with AP.

To conclude, for the first time, we were able to associate germline genetic variation in
ABCC4 with the risk of AP during treatment for childhood ALL. Our results demonstrate
that ABCC4 was consistently related to AP in GWAS as well as in fine-mapping analyses by
NGS, supporting a true role of ABCC4 in the development of AP. However, our study on a
rare phenotype in a rare disease also clearly demonstrates that international joint efforts are
needed to more reliably assess genetic risk factors for AP and other rare toxicities observed
in childhood ALL by using larger pooled patient cohorts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10214815/s1: Table S1. Treatment details of protocol AIEOP-BFM ALL 2000. Table S2.
Additional information on top AP-associated SNV from GWAS and fine-mapping (NGS) analyses.
Table S3. SNV within the CPA2, PRSS1 and ULK2 genes previously identified by GWAS analyses and
their association with AP in our cohort. Table S4. Genotype frequencies and association with risk of
AP for SNV derived from fine-mapping by NGS analyses in the initial cohort. Table S5. Genotype
frequencies and association with risk of AP for SNV derived from fine-mapping by NGS analyses
in the replication cohort. Table S6: Genotype frequencies and association with risk of AP for SNV
derived from fine-mapping by NGS analyses in the combined cohort (initial and replication). Table
S7. Linkage disequilibrium of top ABCC4 SNV from GWAS and fine-mapping analyses. Table S8.
Linkage disequilibrium of CFTR SNV. Figure S1. Identification of individuals in the GWA scan of
non-European ancestry. Figure S2. Quantile-quantile (Q-Q) plots showing observed vs. expected
distribution of p-values for association of the GWAS-SNVs with Acute Pancreatitis (AP). Figure S3.
Regional plots of the loci of the SNVs identified within the first approach of the GWAS of AP patients
and controls (with the exception of the SNV located on the gene ABCC4, which is represented in
Figure 1 in the article). Figure S4. Regional plots of the loci of the SNVs identified within the second
approach of the GWAS of AP patients and controls (with the exception of the SNVs located on the
genes FGF10 and ASPG, which are represented in Figure 1 in the article).
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