46 research outputs found

    Neural correlates of target detection in the attentional blink

    Get PDF
    Attention, attentional blink, rapid serial visual presentation, RSVP, ERP, EEG, fMRI, gammaband, oscillatiory activityMagdeburg, Univ., Fak. fĂĽr Naturwiss., Diss., 2004von Cornelia Kranczioc

    Investigating Priming Effects of Physical Practice on Motor Imagery-Induced Event-Related Desynchronization

    Get PDF
    For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performance-enhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra- and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI

    Impaired evoked and resting-state brain oscillations in patients with liver cirrhosis as revealed by magnetoencephalography

    Get PDF
    AbstractA number of studies suggest that the clinical manifestation of neurological deficits in hepatic encephalopathy results from pathologically synchronized neuronal oscillations and altered oscillatory coupling. In the present study spontaneous and evoked oscillatory brain activities were analyzed jointly with established behavioral measures of altered visual oscillatory processing. Critical flicker and fusion frequencies (CFF, FUF) were measured in 25 patients diagnosed with liver cirrhosis and 30 healthy controls. Magnetoencephalography (MEG) data were collected at rest and during a visual task employing repetitive stimulation. Resting MEG and evoked fields were analyzed. CFF and FUF were found to be reduced in patients, providing behavioral evidence for deficits in visual oscillatory processing. These alterations were found to be related to resting brain activity in patients, namely that the lower the dominant MEG frequency at rest, the lower the CFF and FUF. An analysis of evoked fields at sensor level indicated that in comparison to normal controls, patients were not able to dynamically adapt to flickering visual stimulation. Evoked activity was also analyzed based on independent components (ICs) derived by independent component analysis. The similarity between the shape of each IC and an artificial sine function representing the stimulation frequency was tested via magnitude squared coherence. In controls, we observed a small number of components that correlated strongly with the sine function and a high number of ICs that did not correlate with the sine function. Interestingly, patient data were characterized by a high number of moderately correlating components. Taken together, these results indicate a fundamental divergence of the cerebral resonance activity in cirrhotic patients

    Does Fractional Anisotropy Predict Motor Imagery Neurofeedback Performance in Healthy Older Adults?

    Get PDF
    Motor imagery neurofeedback training has been proposed as a potential add-on therapy for motor impairment after stroke, but not everyone benefits from it. Previous work has used white matter integrity to predict motor imagery neurofeedback aptitude in healthy young adults. We set out to test this approach with motor imagery neurofeedback that is closer to that used for stroke rehabilitation and in a sample whose age is closer to that of typical stroke patients. Using shrinkage linear discriminant analysis with fractional anisotropy values in 48 white matter regions as predictors, we predicted whether each participant in a sample of 21 healthy older adults (48–77 years old) was a good or a bad performer with 84.8% accuracy. However, the regions used for prediction in our sample differed from those identified previously, and previously suggested regions did not yield significant prediction in our sample. Including demographic and cognitive variables which may correlate with motor imagery neurofeedback performance and white matter structure as candidate predictors revealed an association with age but also led to loss of statistical significance and somewhat poorer prediction accuracy (69.6%). Our results suggest cast doubt on the feasibility of predicting the benefit of motor imagery neurofeedback from fractional anisotropy. At the very least, such predictions should be based on data collected using the same paradigm and with subjects whose characteristics match those of the target case as closely as possible

    Good vibrations, bad vibrations: Oscillatory brain activity in the attentional blink

    Get PDF
    The attentional blink (AB) is a deficit in reporting the second (T2) of two targets (T1, T2) when presented in close temporal succession and within a stream of distractor stimuli. The AB has received a great deal of attention in the past two decades because it allows to study the mechanisms that influence the rate and depth of information processing in various setups and therefore provides an elegant way to study correlates of conscious perception in supra-threshold stimuli. Recently evidence has accumulated suggesting that oscillatory signals play a significant role in temporally coordinating information between brain areas. This review focuses on studies looking into oscillatory brain activity in the AB. The results of these studies indicate that the AB is related to modulations in oscillatory brain activity in the theta, alpha, beta, and gamma frequency bands. These modulations are sometimes restricted to a circumscribed brain area but more frequently include several brain regions. They occur before targets are presented as well as after the presentation of the targets. We will argue that the complexity of the findings supports the idea that the AB is not the result of a processing impairment in one particular process or brain area, but the consequence of a dynamic interplay between several processes and/or parts of a neural network

    Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

    Get PDF
    Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.</p

    Conscious perception of neutral stimuli and the amygdala

    No full text

    Individual differences in dual-target RSVP task performance relate to entrainment but not to individual alpha frequency

    No full text
    <div><p>The attentional blink (AB) paradigm is widely used to study visual temporal attention. An important feature of the standard AB paradigm is repetitive visual stimulation, more precisely the rapid serial visual presentation (RSVP) of numerous distracters interspersed with two targets. The RSVP stream is likely to result in entrainment of visual cortex, which has been suggested to negatively affect target identification in the AB paradigm. The present EEG study tested this idea with an inter-individual differences approach. AB task performance and measures of entrainment were derived from 51 participants. Other than predicted, moderate positive correlations were observed for inter-trial coherence and performance, but only for targets not immediately preceded by other targets. A positive correlation with power was evident for targets presented in the critical AB time window. In a second step, it was tested whether the distance between individual alpha frequency and RSVP frequency mediated correlations with inter-trial coherence, as entrainment of the visual cortex through repetitive visual stimulation is particularly effective when the frequency of the stimulation matches the individual alpha frequency. However, no evidence was found supporting such link. While compatible with a number of findings related to the AB and to visual entrainment, the findings of the present study do not provide evidence for the notion that entrainment to the RSVP stream creates a neural environment unfavourable for detecting targets an RSVP stream.</p></div

    Correlation of 10 Hz total power, ERP power and ITC with T2|T1 lag 2 identification rate and AB magnitudes.

    No full text
    <p>Correlation of 10 Hz total power, ERP power and ITC with T2|T1 lag 2 identification rate and AB magnitudes.</p
    corecore