21 research outputs found

    A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 19 (2016): 387-395, doi:10.1007/s10021-015-9934-1.Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.This material is based upon work supported by the National Science Foundation under Grant No. DEB-1145815 and 0949420.2016-11-1

    Convergence of soil nitrogen isotopes across global climate gradients

    Get PDF
    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss

    Terricolous fungal sporocarp chemistry

    No full text
    Sporocarp C, N and P concentration data by species collection over all study plot

    Mineral soil and forest floor chemistry

    No full text
    Soil C, N and P concentrations by subsamples for all study plot

    Buried bag N concentrations

    No full text
    In situ buried bag methodology to measure soil nitrogen availabilit

    Data from: Tree ring δ15N as validation of space-for-time substitution in disturbance studies of forest nitrogen status

    No full text
    Forest ecosystem nitrogen (N) response to disturbance has often been examined by space-for-time substitution, but there are few objective tests of the possible variation in disturbance type and intensity across chronosequence sites. We hypothesized that tree ring δ15N, as a record of ecosystem N status, could validate chronosequence assumptions and provide isotopic evidence to corroborate N trends. To test this we measured soil N availability, soil δ15N, and foliar N attributes of overstory Douglas-fir (Pseudotsuga menziesii) and understory western hemlock (Tsuga heterophylla) across three old-growth stands and nine second-growth plantations on southeast Vancouver Island, British Columbia (Canada). Increment cores for wood δ15N were retrieved from three co-dominant Douglas-fir per plot. Bulk soil δ15N was well aligned with both foliar and recent wood δ15N, demonstrating the utility of wood δ15N in monitoring ecosystem N status. Strongly contrasting trends in tree ring δ15N were evident among second-growth stands, with most trees from plantations older than 50 years exhibiting steep declines (3–4‰) in δ15N but with no temporal trends detected for younger plantations. The discrepancy in tree ring δ15N suggests disturbance history varied considerably among second-growth sites, likely because of greater slash loads and hotter broadcast burns on older cutblocks. As a consequence, the pattern of increased soil N availability and foliar N concentration with time since disturbance derived from the chronosequence could not be validated. Tree ring δ15N may provide insights into disturbance intensity, especially fire, and correlations with foliar N concentration could inform the extent of changes in stand nutrition

    tree ring 15N by site and tree

    No full text
    Natural 15N abundance of wood samples from increment cores of Douglas-fir over chronosequence plot

    Data from: Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C : N : P) across temperate rainforests as evidence of shared nutrient constraints among symbionts

    No full text
    Summary: Quantifying nutritional dynamics of free-living saprotrophs and symbiotic ectomycorrhizal fungi (EMF) in the field is challenging, but the stoichiometry of fruiting bodies (sporocarps) may be an effective methodology for this purpose. Carbon (C), nitrogen (N), and phosphorus (P) concentrations of soils, foliage and 146 sporocarp collections were analyzed from 14 Pseudotsuga menziesii var. menziesii stands across a podzolization gradient on Vancouver Island (Canada). N and P concentrations were considerably higher in saprotrophic fungi. Fungal N% increased with soil N content at a greater rate for saprotrophs than EMF, while fungal P% of saprotrophs was more constrained. Fungal N:P was more responsive to soil N:P for EMF (homeostatic regulation coefficient ‘H’ =2.9) than saprotrophs (H= 5.9), while N:P of EMF and host tree foliage scaled almost identically. Results underscore the role of EMF as nutrient conduits, supporting host trees, whereas saprotrophs maintain a greater degree of nutritional homeostasis. Site nutrient constraints were shared in equal measure between EMF and host trees, particularly for P, suggesting neither partner benefits from enhanced nutrition at the expense of the other. Sporocarp stoichiometry provides new insights into mycorrhizal relationships and illustrates pervasive P deficiencies across temperate rainforests of the Pacific Northwest
    corecore