317 research outputs found
Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)
The magnetic state and magnetic coupling of individual atoms in nanoscale
structures relies on a delicate balance between different interactions with the
atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the
self-assembled formation of highly ordered bilayer structures of Fe atoms and
organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe
atoms are encaged in a three-dimensional coordination motif by three T4PT
molecules in the surface plane and an additional T4PT unit on top. Within this
crystal field, the Fe atoms retain a magnetic ground state with easy-axis
anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic
circular dichroism. The magnetization curves reveal the existence of
ferromagnetic coupling between the Fe centers
Effects of Radiographic Contrast Media on the Micromorphology of the Junctional Complex of Erythrocytes Visualized by Immunocytology
Effects of radiographic contrast media (RCM) application were demonstrated in vitro and in vivo where the injection of RCM into the A. axillaris of patients with coronary artery disease was followed by a significant and RCM-dependent decrease of erythrocyte velocity in downstream skin capillaries. Another study in pigs revealed that the deceleration of erythrocytes coincided with a significant reduction of the oxygen partial pressure in the myocardium—supplied by the left coronary artery—after the administration of RCM into this artery. Further reports showed RCM dependent alterations of erythrocytes like echinocyte formation and exocytosis, sequestration of actin or band 3 and the buckling of endothelial cells coinciding with a formation of interendothelial fenestrations leading to areas devoid of endothelial cells. Key to morphological alterations of erythrocytes is the membrane cytoskeleton, which is linked to the band 3 in the erythrocyte membrane via the junctional complex. Fundamental observations regarding the cell biological and biochemical aspects of the structure and function of the cell membrane and the membrane cytoskeleton of erythrocytes have been reported. This review focuses on recent results gained, e.g., by advanced confocal laser scanning microscopy of different double-stained structural elements of the erythrocyte membrane cytoskeleton
Climate Change and Potato Production in Contrasting South African Agro-Ecosystems 3. Effects on Relative Development Rates of Selected Pathogens and Pests
A set of daily weather data simulations for 1961 to 2050 were used to calculate past and future trends in pest and disease pressure in potato cropping systems at three agro-ecologically distinct sites in South Africa: the Sandveld, the Eastern Free State and Limpopo. The diseases and pests modelled were late blight, early blight and brown spot, blackleg and soft rot, root-knot nematodes and the peach-potato aphid Myzus persicae (as indicator of Potato virus Y and Potato leaf roll virus). The effects of climate on trends in relative development rates of these pathogens and pests were modelled for each pathogen and pest using a set of quantitative parameters, which included specific temperature and moisture requirements for population growth, compiled from literature. Results showed that the cumulative relative development rate (cRDR) of soft rot and blackleg, root-knot nematodes and M. persicae will increase over the 90-year period in the areas under consideration. The cRDR of early blight and brown spot is likely to increase in the wet winter and wet summer crops of the Sandveld and Eastern Free State, respectively, but remains unchanged in the dry summer and dry winter crops of the Sandveld and Limpopo, respectively. Climate change will decrease the cRDR of late blight in all of the cropping systems modelled, except in the wet winter crop of the Sandveld. These results help to set priorities in research and breeding, specifically in relation to management strategies for diseases and pests
Effect of Radiographic Contrast Media on the Spectrin/Band3-Network of the Membrane Skeleton of Erythrocytes
The membrane of red blood cells consists of a phospholipid bilayer with embedded membrane proteins and is associated on the cytoplasmatic side with a network of proteins, the membrane skeleton. Band3 has an important role as centre of the functional complexes e.g. gas exchange complex and as element of attachment for the membrane skeleton maintaining membrane stability and flexibility. Up to now it is unclear if band3 is involved in the morphology change of red blood cells after contact with radiographic contrast media. The study revealed for the first time that Iopromide induced markedly more severe alterations of the membrane skeleton compared to Iodixanol whose effects were similar to erythrocytes suspended in autologous plasma. A remarkable clustering of band3 was found associated with an accumulation of band3 in spicules and also a sequestration of band3 to the extracellular space. This was evidently accompanied by a gross reduction of functional band3 complexes combined with a dissociation of spectrin from band3 leading to a loss of homogeneity of the spectrin network. It could be demonstrated for the first time that RCM not only induced echinocyte formation but also exocytosis of particles at least coated with band3
Site-specific bonding of copper adatoms to pyridine end groups mediating the formation of two-dimensional coordination networks on metal surfaces
We study the formation of a coordination network consisting of the organic
pyridine-based 2,4,6-tris(4-pyridine)-1,3,5-triazine (T4PT) species and Cu
atoms on Cu(111) and Ag(111) metal surfaces. Using scanning tunneling
microscopy, we find that the organic molecule T4PT forms stable two-
dimensional porous networks on the surface of Cu(111) and, by codeposition of
Cu atoms, also on the Ag(111) crystal, in which Cu atoms are twofold
coordinated by T4PT molecules. X-ray absorption spectroscopy measurements of
the metal-organic network Cu–T4PT on Ag(111) accompanied by density-functional
theory calculations show that the nitrogen atoms of the pyridine end groups of
the T4PT molecules are the active sites in coordinating the Cu adatoms. X-ray
magnetic circular dichroism experiments reveal that the Cu atom in such a
metal-organic motif is in a low-valent d10 state and has no magnetic moment
Climate change and potato production in contrasting South African agro-ecosystems 3. Effects on relative development rates of selected pathogens and pests
A set of daily weather data simulations for 1961 to 2050 were used to
calculate past and future trends in pest and disease pressure in potato cropping
systems at three agro-ecologically distinct sites in South Africa: the Sandveld, the
Eastern Free State and Limpopo. The diseases and pests modelled were late blight,
early blight and brown spot, blackleg and soft rot, root-knot nematodes and the
peach-potato aphid Myzus persicae (as indicator of Potato virus Y and Potato leaf
roll virus). The effects of climate on trends in relative development rates of these
pathogens and pests were modelled for each pathogen and pest using a set of
quantitative parameters, which included specific temperature and moisture requirements
for population growth, compiled from literature. Results showed that the
cumulative relative development rate (cRDR) of soft rot and blackleg, root-knot
nematodes and M. persicae will increase over the 90-year period in the areas under consideration. The cRDR of early blight and brown spot is likely to increase in the
wet winter and wet summer crops of the Sandveld and Eastern Free State, respectively,
but remains unchanged in the dry summer and dry winter crops of the
Sandveld and Limpopo, respectively. Climate change will decrease the cRDR of late
blight in all of the cropping systems modelled, except in the wet winter crop of the
Sandveld. These results help to set priorities in research and breeding, specifically in
relation to management strategies for diseases and pests.Potatoes South Africa and the Netherlands Ministry of Economy, Agriculture and Innovation Agriculture.http://link.springer.com/journal/11540hb201
HIF2α is a Direct Regulator of Neutrophil Motility
Orchestrated recruitment of neutrophils to inflamed tissue is essential during initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it is still unclear how these factors influence the migration of neutrophils to and at the site of inflammation either during their transmigration through the blood-endothelial cell barrier, or their motility in the interstitial space. Here, we reveal that activation of the Hypoxia Inducible Factor-2 (HIF2α) due to deficiency of HIF-prolyl hydroxylase domain protein-2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNAseq analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the here identified novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation as it promotes neutrophil movement through highly confined tissue landscapes
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Histological and SEM Assessment of Blood Stasis in Kidney Blood Vessels after Repeated Intra-Arterial Application of Radiographic Contrast Media
Background: After application of iodinated contrast media (CM), a pronounced deterioration of the microcirculation in skin and myocardium was reported. Clinically, the repeated application of CM, especially, led to an increase of the renal resistance index (RRI). With respect to the transiency of the RRI increase, it is reasonable to assume that the deterioration of blood flow could be due to transient blood stasis caused by reversible morphologic cell alterations due to osmotic discrepancies between CM and human blood. Therefore, the hypothesis was investigated whether CM are able to induce in vivo such blood stasis and cell deformations in the renal vasculature of well-hydrated pigs. Methods: The in vivo study was performed as a prospective randomized examination to compare the effects of two different CM in 16 pigs (German Landrace). Pigs were randomized to receive either Iodixanol (n= 8), or Iopromide (n= 8). Each animal received 10 injections separated by 5-min intervals via the suprarenal aorta at a rate of 10 mL/s according to the usual procedure during a cardiac catheter examination. Finally, the kidneys were explanted and processed for histology (H & E staining and fibrin staining according to Weigert) as well as for scanning electron microscopy (SEM) with regards to morphologic correlates explaining the changes in the microcirculation. Results: In each of the predefined four categories of vascular diameters, blood stasis were found, but clearly more often after application of Iopromide than after application of Iodixanol (p< 0.001). In addition, Iopromide induced more blood stasis in all of the examined kidney regions compared to Iodixanol (p= 0.0001). There were no obstructive events in the middle cortex following the application of Iodixanol. Except for the region around a puncture channel of a placed-in catheter probe, no fibrin was detected in Weigert's fibrin-stained samples, neither around the histologically assessed thrombi nor in vessels with blood stasis. Complementary SEM analyses revealed in a few cases only a slight generation of fibrin and thrombi and deformations, such as echinocyte and "box-like" deformations. Conclusions: According to previous in vitro studies, pathological erythrocyte deformations, such as echinocyte and box-like formation of erythrocytes, were observed also in vivo. In addition, blood stasis and/or thrombi could be detected in histological samples from explanted kidneys from young pigs after repeated in vivo administration of CM. In only a few cases, mural platelet aggregates within minimal fibrin meshes occurred only after the application of Iopromide
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
- …