6 research outputs found

    Analysis and use of neural networks as a tool for a rapid non-invasive estimation

    Get PDF
    Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820 nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, QA–, is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of “unknown” samples with a correlation between calculated and gravimetrically determined RWC values of about R2 ≈ 0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial

    Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation

    Get PDF
    AbstractWater deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, QA–, is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of “unknown” samples with a correlation between calculated and gravimetrically determined RWC values of about R2≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial

    ï»żAlterations in membrane stability after in vitro exposure of human erythrocytes to 2.41 GHz electromagnetic field

    No full text
    The growing use of wireless communication devices has been significantly increasing the level of high frequency electromagnetic fields (EMFs) in the environment, which raises a concern for possible deleterious effects on living organisms. Long lasting exposure to low-intensity EMFs can cause effects on the molecular and cellular level, and a number of morphological and physiological changes. The aim of this work was to investigate the effects of 2.41 GHz EMF emitted by wireless communication systems on human erythrocytes after in vitro irradiation. The amount of the hemoglobin released from the cells was measured as an indicator for membrane destabilization. Effects of different exposure times (20 min or 4 h) and time elapsed after exposure to 2.41 GHz pulsed or continuous EMFs with different intensities, emitted from a textile (0.213–0.238 V/m) or a dipole (5, 20, 40 and 180 V/m) antenna, were investigated. The obtained results showed that the low intensity EMF had no significant effect on the hemoglobin release from irradiated cells; even a slight tendency for membrane stabilization was noticed 3–4 hours after the end of 20-min exposure to 0.213–0.238 V/m, 2.41 GHz EMF. There was no difference in the effects of continuous and pulsed EMFs. Increased hemoglobin release was observed only during the 4-hour exposure to 180 V/m, 2.41 GHz continuous EMF. Under these conditions, the temperature of the cell suspension had been rising, so we compared the results obtained under EMF with the effects of conventional heating. Moreover, after 1-hour exposure to 180 V/m the released hemoglobin level was a bit higher than the control one but the difference disappears within an hour after terminating the irradiation. In conclusion, the in vitro exposure to 2.41 GHz EMF emitted by wireless communication devices with power density below the reference level for population exposure does not change the stability of the cell membrane of human erythrocytes

    Wearable Antennas for Sensor Networks and IoT Applications: Evaluation of SAR and Biological Effects

    No full text
    In recent years, there has been a rapid development in the wearable industry. The growing number of wearables has led to the demand for new lightweight, flexible wearable antennas. In order to be applicable in IoT wearable devices, the antennas must meet certain electrical, mechanical, manufacturing, and safety requirements (e.g., specific absorption rate (SAR) below worldwide limits). However, the assessment of SAR does not provide information on the mechanisms of interaction between low-intensity electromagnetic fields emitted by wearable antennas and the human body. In this paper, we presented a detailed investigation of the SAR induced in erythrocyte suspensions from a fully textile wearable antenna at realistic (net input power 6.3 mW) and conservative (net input power 450 mW) conditions at 2.41 GHz, as well as results from in vitro experiments on the stability of human erythrocyte membranes at both exposure conditions. The detailed investigation showed that the 1 g average SARs were 0.5758 W/kg and 41.13 W/kg, respectively. Results from the in vitro experiments demonstrated that the short-term (20 min) irradiation of erythrocyte membranes in the reactive near-field of the wearable antenna at 6.3 mW input power had a stabilizing effect. Long-term exposure (120 min) had a destabilizing effect on the erythrocyte membrane

    Functional Characterization of the Photosynthetic Machinery in Smicronix Galls on the Parasitic Plant Cuscuta campestris by JIP-Test

    No full text
    Members of the genus Cuscuta are generally considered to be non-photosynthetic, stem-holoparasitic flowering plants. Under certain circumstances, at least some members of the genus are capable of limited photosynthesis. The galls of the Smicronyx weevils formed on Cuscuta campestris are particularly rich in chlorophylls compared to the stem of the parasitic plant. In the present study, we aimed to characterize the photosynthetic activity in the inner and outer gall cortices in comparison to the non-photosynthetic stems and a reference plant (Arabidopsis thaliana). The recorded prompt chlorophyll fluorescence transients were analyzed using JIP test. Detailed analysis of the chlorophyll fluorescence confirmed the presence of actively functioning photosynthetic machinery, especially in the inner cortex of the galls. This photosynthesis, induced by the insect larvae, did not reach the levels of the photosynthetic activity in Arabidopsis thaliana plants. Thylakoid protein complexes were identified by separation with two-dimensional Blue Native/SDS PAGE. It appeared that some of the complexes presented in A. thaliana are missing in C. campestris. We hypothesize that the insect-triggered transition from non-photosynthetic to photosynthetic tissue in the gall is driven by the increased requirements for nutrients related to the larval nutrition
    corecore