47 research outputs found

    Accurate fundamental parameters and distance to a massive early-type eclipsing binary in the Danks 2 cluster

    Get PDF
    We present a study of the properties of the O-type, massive eclipsing binary 2MASS J13130841-6239275 located in the outskirts of the Danks 2 cluster in the G305 star-forming complex, using near-infrared spectroscopy from VLT/ISAAC. We derive the masses and radii to be 24.5±\pm0.9 M_{\odot} and 9.2±\pm0.1 R_{\odot} for the primary and 21.7±\pm0.8 M_{\odot} and 8.7±\pm0.1 R_{\odot} for the secondary component. In addition, we evaluate the sensitivity of our parameters to the choice of the spectral features used to determine the radial velocities. Both components appear to be main-sequence O6.5-O7 type stars at an age of \sim5 Myr, which is in agreement with the age of the cluster. A high visual extinction of A5495_{5495}=11.9±\pm0.1 mag is reported, which is likely attributed to the cold molecular gas contaminating the north-east region of the cluster. By fitting the spectral energy distribution of the system to the available BVIcJHKsBVI_{c}JHK_{s} photometry, we determine a distance to the system of 3.52±\pm0.08 kpc with a precision of 2%\%, which is the most well-determined distance to the Danks 2 cluster and the host complex reported in the literature.Comment: 13 pages, 9 figures, 6 tables. Accepted for publication in A&

    Temperatures of dust and gas in S~140

    Get PDF
    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 μ\mum and SCUBA at 450 μ\mum. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. We find that the gas temperature around the infrared sources varies between 35 and 55K and that the gas is systematically warmer than the dust by ~5-15K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35K in the surrounding up to 40-45K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ~10^2 Lo. We conclude that the gas heating in the S 140 region is very efficient even at high densities, most likely due to the deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&

    Mapping the H2D+ and N2H+ emission toward prestellar cores. Testing dynamical models of the collapse using gas tracers

    Get PDF
    Context. The study of prestellar cores is critical as they set the initial conditions in star formation and determine the final mass of the stellar object. To date, several hypotheses have described their gravitational collapse. Deriving the dynamical model that fits both the observed dust and the gas emission from such cores is therefore of great importance. Aims. We perform detailed line analysis and modeling of H2D+ 110–111 and N2H+ 4–3 emission at 372 GHz, using 2′ × 2′ maps (James Clerk Maxwell Telescope; JCMT). Our goal is to test the most prominent dynamical models by comparing the modeled gas kinematics and spatial distribution (H2D+ and N2H+) with observations toward four prestellar (L1544, L183, L694-2, L1517B) and one protostellar core (L1521f). Methods. We fit the line profiles at all offsets showing emission using single Gaussian distributions. We investigate how the line parameters (VLSR, FWHM and TA*) change with offset to examine the velocity field, the degree of nonthermal contributions to the line broadening, and the distribution of the material in these cores. To assess the thermal broadening, we derive the average gas kinetic temperature toward all cores using the non-LTE radiative transfer code RADEX. We perform a more detailed non-LTE radiative transfer modeling using RATRAN, where we compare the predicted spatial distribution and line profiles of H2D+ and N2H+ with observations toward all cores. To do so, we adopt the physical structure for each core predicted by three different dynamical models taken from literature: quasi-equilibrium Bonnor–Ebert sphere (QE-BES), singular isothermal sphere (SIS), and Larson–Penston (LP) flow. In addition, we compare these results to those of a static sphere, whose density and temperature profiles are based on the observed dust continuum. Lastly, we constrain the abundance profiles of H2D+ and N2H+ toward each core. Results. We find that variable nonthermal contributions (variations by a factor of 2.5) are required to explain the observed line width of both H2D+ and N2H+, while the nonthermal contributions are found to be 50% higher for N2H+. The RADEX modeling results in average core column densities of ~9 × 1012 cm−2 for H2D+ and N2H+. The LP flow seems to be the dynamical model that can reproduce the observed spatial distribution and line profiles of H2D+ on a global scale of prestellar cores, while the SIS model systematically and significantly overestimates the width of the line profiles and underestimates the line peak intensity. We find similar abundance profiles for the prestellar cores and the protostellar core. The typical abundances of H2D+ vary between 10−9 and 10−10 for the inner 5000 au and drop by about an order of magnitude for the outer regions of the core (2 × 10−10–6 × 10−11). In addition, a higher N2H+ abundance by about a factor of 4 compared to H2D+ is found toward the two cores with detected emission. The presence of N2H+ 4–3 toward the protostellar core and toward one of the prestellar cores reflects the increasing densities as the core evolves. Conclusions. Our analysis provides an updated picture of the physical structure of prestellar cores. Although the dynamical models account for mass differences by up to a factor of 7, the velocity structure drives the shape of the line profiles, allowing for a robust comparison between the models. We find that the SIS model can be clearly excluded in explaining the gas emission toward the cores, but a larger sample is required to differentiate clearly between the LP flow, the QE-BES, and the static models. All models of collapse underestimate the intensity of the gas emission by up to several factors toward the only protostellar core in our sample, indicating that different dynamics take place in different evolutionary core stages. If the LP model is confirmed toward a larger sample of prestellar cores, it would indicate that they may form by compression or accretion of gas from larger scales. If the QE-BES model is confirmed, it means that quasi-hydrostatic cores can exist within turbulent ISM

    Fundamental Parameters of four Massive Eclipsing Binaries in Westerlund 1

    Get PDF
    We present fundamental parameters of 4 massive eclipsing binaries in the young massive cluster Westerlund 1. The goal is to measure accurate masses and radii of their component stars, which provide much needed constraints for evolutionary models of massive stars. Accurate parameters can further be used to determine a dynamical lower limit for the magnetar progenitor and to obtain an independent distance to the cluster. Our results confirm and extend the evidence for a high mass for the progenitor of the magnetar.Comment: 2 pages, to appear in the proceedings of the IAUS 282 on "From Interacting Binaries to Exoplanets:Essential Modelling Tools" (Tatranska Lomnica, July 18-22, 2011), Cambridge University Pres

    Evolutionary status of dense cores in the NGC 1333 IRAS 4 star-forming region

    Get PDF
    Context: Protostellar evolution after the formation of the protostar is becoming reasonably well characterized, but the evolution from a prestellar core to a protostar is not well known, although the first hydrostatic core (FHSC) must be a pivotal step. Aims: NGC 1333 – IRAS 4C is a potentially very young object that we can directly compare with the nearby Class 0 objects IRAS 4A and IRAS 4B. Observational constraints are provided by spectral imaging from the JCMT Spectral Legacy Survey (330−373 GHz). We present integrated intensity and velocity maps of several species, including CO, H₂CO and CH₃OH. CARMA observations provide additional information with which we can distinguish IRAS 4C from other evolutionary stages. Methods: We present the observational signatures of the velocity of an observed outflow, the degree of CO depletion, the deuterium fractionation of [DCO⁺]/[HCO⁺], and gas kinetic temperatures. Results: We report differences between the three sources in four aspects: a) the kinetic temperature as probed using the H₂CO lines is much lower toward IRAS 4C than the other two sources; b) the line profiles of the detected species show strong outflow activity toward IRAS 4A and IRAS 4B, but not toward IRAS 4C; c) the HCN/HNC is <1 toward IRAS 4C, which confirms the cold nature of the source; d) the degree of CO depletion and the deuteration are lowest toward the warmest of the sources, IRAS 4B. Conclusions: IRAS 4C seems to be in a different evolutionary state than the sources IRAS 4A and IRAS 4B. We can probably exclude the FHSC stage becaues of the relatively low Lsmm/Lbol (~6%), and we investigate the earliest accretion phase of Class 0 stage and the transition between Class 0 to Class I. Our results do not show a consistent scenario for either case; the main problem is the absence of outflow activity and the cold nature of IRAS 4C. The number of FHSC candidates in Perseus is ~10 times higher than current models predict, which suggests that the lifespan of these objects is ≥103 yrs, which might be due to an accretion rate lower than 4 × 10⁻⁵ M⊙/yr

    First spatially resolved Na I and He I transitions towards a massive young stellar object. Finding new tracers for the gaseous star/disc interface

    Get PDF
    With steady observational advances, the formation of massive stars is being understood in more detail. Numerical models are converging on a scenario where accretion discs play a key role. Direct observational evidence of such discs at a few au scales is scarce, due to the rarity of such objects and the observational challenges, including the lack of adequate diagnostic lines in the near-IR. We present the analysis of K-band spectro-interferometric observations toward the Massive Young Stellar Object IRAS 13481-6124, which is known to host an accreting dusty disc. Using GRAVITY on the VLTI, we trace the crucial au-scales of the warm inner interface between the star and the accretion dusty disc. We detect and spatially resolve the Na I doublet and He I transitions towards an object of this class for the first time. The new observations in combination with our geometric models allowed us to probe the smallest au-scales of accretion/ejection around a MYSO. We find that Na I originates in the disc at smaller radii than the dust disc and is more compact than any of the other spatially resolved diagnostics (Brγ, He I, and CO). Our findings suggest that Na I can be a new powerful diagnostic line in tracing the warm star/disc accreting interface of forming (massive) stars, while the similarities between He I and Brγ point towards an accretion/ejection origin of He I

    Optical and near-infrared observations of the Fried Egg Nebula

    Get PDF
    Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate and geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to provide insight into the nature (i.e. geometry, rates) of mass-loss episodes, and in particular, the connection between the observed asymmetries due to the mass lost in a fast wind or during a previous, prodigious mass-losing phase. In this context, yellow hypergiants offer a good opportunity to study mass-loss events. Methods. We analysed a large set of optical and near-infrared data in spectroscopic and photometric, spectropolarimetric, and interferometric (GRAVITY/VLTI) modes, towards the yellow hypergiant IRAS 17163−3907. We used X-shooter optical observations to determine the spectral type of this yellow hypergiant and we present the first model-independent, reconstructed images of IRAS 17163−3907 at these wavelengths tracing milli-arcsecond scales. Lastly, we applied a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published diffraction-limited VISIR images at 8.59 μm, 11.85 μm, and 12.81 μm simultaneously, adopting a revised distance determination using Gaia Data Release 2 measurements. Results. We constrain the spectral type of IRAS 17163−3907 to be slightly earlier than A6Ia (Teff ∼ 8500 K). The interferometric observables around the 2 μm window towards IRAS 17163−3907 show that the Brγ emission appears to be more extended and asymmetric than the Na I and the continuum emission. Interestingly, the spectrum of IRAS 17163−3907 around 2 μm shows Mg II emission that is not previously seen in other objects of its class. In addition, Brγ shows variability in a time interval of four months that is not seen towards Na I. Lastly, in addition to the two known shells surrounding IRAS 17163−3907, we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The 2 μm continuum originates directly from the star and not from hot dust surrounding the stellar object. The observed spectroscopic variability of Brγ could be a result of variability in the mass-loss rate. The interpretation of the presence of Na I emission at closer distances to the star compared to Brγ has been a challenge in various studies. To address this, we examine several scenarios. We argue that the presence of a pseudo-photosphere, which was traditionally considered to be the prominent explanation, is not needed and that it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform theories of mass-loss mechanisms, which is a topic still under debate both in theory and observations. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms

    K-band GRAVITY/VLTI interferometry of "extreme" Herbig Be stars. The size-luminosity relation revisited.

    Get PDF
    Context. It has been hypothesized that the location of Herbig Ae/Be stars (HAeBes) within the empirical relation between the inner disk radius (rin), inferred from K-band interferometry, and the stellar luminosity (L*), is related to the presence of the innermost gas, the disk-to-star accretion mechanism, the dust disk properties inferred from the spectral energy distributions (SEDs), or a combination of these effects. However, no general observational confirmation has been provided to date. Aims. This work aims to test whether the previously proposed hypotheses do, in fact, serve as a general explanation for the distribution of HAeBes in the size–luminosity diagram. Methods. GRAVITY/VLTI spectro-interferometric observations at ~2.2 μm have been obtained for five HBes representing two extreme cases concerning the presence of innermost gas and accretion modes. V590 Mon, PDS 281, and HD 94509 show no excess in the near-ultraviolet, Balmer region of the spectra (ΔDB), indicative of a negligible amount of inner gas and disk-to-star accretion, whereas DG Cir and HD 141926 show such strong ΔDB values that cannot be reproduced from magnetospheric accretion, but probably come from the alternative boundary layer mechanism. In turn, the sample includes three Group I and two Group II stars based on the Meeus et al. SED classification scheme. Additional data for these and all HAeBes resolved through K-band interferometry have been compiled from the literature and updated using Gaia EDR3 distances, almost doubling previous samples used to analyze the size–luminosity relation. Results. We find no general trend linking the presence of gas inside the dust destruction radius or the accretion mechanism with the location of HAeBes in the size–luminosity diagram. Similarly, our data do not support the more recent hypothesis linking such a location and the SED groups. Underlying trends are present and must be taken into account when interpreting the size–luminosity correlation. In particular, it cannot be statistically ruled out that this correlation is affected by dependencies of both L* and rin on the wide range of distances to the sources. Still, it is argued that the size–luminosity correlation is most likely to be physically relevant in spite of the previous statistical warning concerning dependencies on distance. Conclusions. Different observational approaches have been used to test the main scenarios proposed to explain the scatter of locations of HAeBes in the size–luminosity diagram. However, none of these scenarios have been confirmed as a fitting general explanation and this issue remains an open question

    Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER

    Get PDF
    Context. Binarity and multiplicity appear to be a common outcome in star formation. In particular, the binary fraction of massive (OB-type) stars can be very high. In many cases, the further stellar evolution of these stars is affected by binary interactions at some stage during their lifetime. The origin of this high binarity and the binary parameters are poorly understood because observational constraints are scarce, which is predominantly due to a dearth of known young massive binary systems. Aims. We aim to identify and describe massive young binary systems in order to fill in the gaps of our knowledge of primordial binarity of massive stars, which is crucial for our understanding of massive star formation. Methods. We observed the two massive young stellar objects (MYSOs) PDS 27 and PDS 37 at the highest spatial resolution provided by VLTI/PIONIER in the H-band (1.3 mas). We applied geometrical models to fit the observed squared visibilities and closure phases. In addition, we performed a radial velocity analysis using published VLT/FORS2 spectropolarimetric and VLT/X-shooter spectroscopic observations. Results. Our findings suggest binary companions for both objects at 12 mas (30 au) for PDS 27 and at 22–28 mas (42–54 au) for PDS 37. This means that they are among the closest MYSO binaries resolved to date. Conclusions. Our data spatially resolve PDS 27 and PDS 37 for the first time, revealing two of the closest and most massive (>8 M⊙) YSO binary candidates to date. PDS 27 and PDS 37 are rare but great laboratories to quantitatively inform and test the theories on formation of such systems
    corecore