30 research outputs found

    Kamalan kallista on vain huono hoito

    Get PDF

    Plasma proteomics of biomarkers for inflammation or cancer cannot predict relapse in chronic myeloid leukaemia patients stopping tyrosine kinase inhibitor therapy

    Get PDF
    Several studies have now shown that chronic myeloid leukaemia (CML) patients in deep molecular remission may discontinue tyrosine kinase inhibitor (TKI) treatment with a treatment free remission (TFR) rate of approximately 40-60 %. Some factors influencing the possibility of TFR have been described but better tools are needed for individual prediction of long-term TFR. Herein, two multiplex panels were utilised to analyse a total of 162 different plasma proteins from 56 patients included in the TKI stopping trial EURO-SKI (Saussele a al., 2018). The purpose was to identify possible plasma protein markers for prediction of successful TKI discontinuation and to evaluate effects of TKI discontinuation on plasma protein profiles. No protein biomarkers sampled before TKI discontinuation could separate relapse cases from non-relapse cases but some plasma proteins differed between patients who relapsed and those who remained in TFR when followed over time after TKI cessation. In conclusion, the plasma protein markers in this study could not predict relapse after TKI discontinuation but may be of use to understand the mechanisms involved in maintenance of TFR.Peer reviewe

    Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm accounting for similar to 15% of all leukemia. Progress of the disease from an indolent chronic phase to the more aggressive accelerated phase or blast phase (BP) occurs in a minority of cases and is associated with an accumulation of somatic mutations. We performed genetic profiling of 85 samples and transcriptome profiling of 12 samples from 59 CML patients. We identified recurrent somatic mutations in ABL1 (37%), ASXL1 (26%), RUNX1 (16%), and BCOR (16%) in the BP and observed that mutation signatures in the BP resembled those of acute myeloid leukemia (AML). We found that mutation load differed between the indolent and aggressive phases and that nonoptimal responders had more nonsilent mutations than did optimal responders at the time of diagnosis, as well as in follow-up. Using RNA sequencing, we identified other than BCR-ABL1 cancer-associated hybrid genes in 6 of the 7 BP samples. Uncovered expression alterations were in turn associated with mechanisms and pathways that could be targeted in CML management and by which somatic alterations may emerge in CML. Last, we showed the value of genetic data in CML management in a personalized medicine setting.Peer reviewe

    Copy number alterations define outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia

    Get PDF
    Funding Information: NGS library preparation, sequencing and sequence analysis were performed by the Institute for Molecular Medicine Finland (FIMM) Technology Center, University of Helsinki. We thank laboratory technicians Jay Klievink in Hematology Research Unit Helsinki (HRUH) and Minna Suvela in FIMM for technical support with the DNA extractions and laboratory coordinator Minna Tuominen in FIMM for technical support with multiplex ligation-dependent probe amplification. We are grateful to the members of the HRUH for discussions and technical help. We thank research nurses Anne Gesterberg, Jenni Raali and Susanna Helkkula for help with clinical data. We thank Dr Veli Kairisto in Tykslab, Dr Taru Kuittinen in Kuopio University Hospital and clinical laboratory geneticists Anne Juvonen and Tarja Salonen in HUSLAB for help with clinical samples. The samples of this project were provided by Finnish University Hospital clinical laboratories and the Finnish Hematology Registry and Clinical Biobank (FHRB) with appropriate ethics approval (Dnro 202/06.01.00/2013). We thank all the patients for their generous participation. The FHRB Biobank is supported by the Finnish Association of Hematology, the Finnish Red Cross Blood Service, Institute for Molecular Medicine Finland, and the participating hospitals in Finland. This study was supported by the Doctoral Program in Clinical Research at the University of Helsinki and personal grants (to HH) from Emil Aaltonen Foundation, Ida Montin Foundation, Blood Disease Research Foundation, Finnish Hematology Association, Finnish Medical Foundation, Biomedicum Helsinki Foundation, Paulo Foundation, (to SM) Finnish Cancer Organizations, Sigrid Juselius Foundation, Signe and Ane Gyllenberg Foundation, Relander Foundation, and state funding for university-level health research in Finland. The laboratory analytics costs of this study were funded by Incyte. Funding Information: TS (not related to this study) is a member of the advisory board of Celgene and AbbVie; is a member of the advisory board of and received lecture fees from Pfizer and Janssen-Cilag; received lecture fees from Bristol Myers Squibb; received congress fees from and is a member of the advisory board of Novartis; received congress fees from Amgen. MP (not-related to this study) is a member of the advisory board of Pfizer and AbbVie; received lecture and congress fees from Novartis. OB received consultancy fees from Novartis and Sanofi. SM (not related to this study) received research funding from Novartis, BMS, Janpix, and Pfizer. All other authors have no conflicts of interest to disclose. Funding Information: NGS library preparation, sequencing and sequence analysis were performed by the Institute for Molecular Medicine Finland (FIMM) Technology Center, University of Helsinki. We thank laboratory technicians Jay Klievink in Hematology Research Unit Helsinki (HRUH) and Minna Suvela in FIMM for technical support with the DNA extractions and laboratory coordinator Minna Tuominen in FIMM for technical support with multiplex ligation-dependent probe amplification. We are grateful to the members of the HRUH for discussions and technical help. We thank research nurses Anne Gesterberg, Jenni Raali and Susanna Helkkula for help with clinical data. We thank Dr Veli Kairisto in Tykslab, Dr Taru Kuittinen in Kuopio University Hospital and clinical laboratory geneticists Anne Juvonen and Tarja Salonen in HUSLAB for help with clinical samples. The samples of this project were provided by Finnish University Hospital clinical laboratories and the Finnish Hematology Registry and Clinical Biobank (FHRB) with appropriate ethics approval (Dnro 202/06.01.00/2013). We thank all the patients for their generous participation. The FHRB Biobank is supported by the Finnish Association of Hematology, the Finnish Red Cross Blood Service, Institute for Molecular Medicine Finland, and the participating hospitals in Finland.Non peer reviewe

    RUNX1mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses

    Get PDF
    Blast-phase chronic myeloid leukemia (BP-CML) is associated with additional chromosomal aberrations,RUNX1mutations being one of the most common. Tyrosine kinase inhibitor therapy has only limited efficacy in BP-CML, and characterization of more defined molecular subtypes is warranted in order to design better treatment modalities for this poor prognosis patient group. Using whole-exome and RNA sequencing we demonstrate thatPHF6andBCORL1mutations,IKZF1deletions, and AID/RAG-mediated rearrangements are enriched inRUNX1(mut)BP-CML leading to typical mutational signature. On transcriptional level interferon and TNF signaling were deregulated in primaryRUNX1(mut)CML cells and stem cell and B-lymphoid factors upregulated giving a rise to distinct phenotype. This was accompanied with the sensitivity ofRUNX1(mut)blasts to CD19-CAR T cells in ex vivo assays. High-throughput drug sensitivity and resistance testing revealed leukemia cells fromRUNX1(mut)patients to be highly responsive for mTOR-, BCL2-, and VEGFR inhibitors and glucocorticoids. These findings were further investigated and confirmed in CRISPR/Cas9-edited homozygousRUNX1(-/-)and heterozygousRUNX1(-/mut)BCR-ABL positive cell lines. Overall, our study provides insights into the pathogenic role ofRUNX1mutations and highlights personalized targeted therapy and CAR T-cell immunotherapy as potentially promising strategies for treatingRUNX1(mut)BP-CML patients.Peer reviewe

    Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML

    Get PDF
    Increasing evidence suggests that the immune system affects prognosis of chronic myeloid leukemia (CML), but the detailed immunological composition of the leukemia bone marrow (BM) microenvironment is unknown. We aimed to characterize the immune landscape of the CML BM and predict the current treatment goal of tyrosine kinase inhibitor (TKI) therapy, molecular remission 4.0 (MR4.0). Using multiplex immunohistochemistry (mIHC) and automated image analysis, we studied BM tissues of CML patients (n = 56) and controls (n = 14) with a total of 30 immunophenotype markers essential in cancer immunology. CML patients' CD4+ and CD8+ T-cells expressed higher levels of putative exhaustion markers PD1, TIM3, and CTLA4 when compared to control. PD1 expression was higher in BM compared to paired peripheral blood (PB) samples, and decreased during TKI therapy. By combining clinical parameters and immune profiles, low CD4+ T-cell proportion, high proportion of PD1+ TIM3-CD8+ T cells, and high PB neutrophil count were most predictive of lower MR4.0 likelihood. Low CD4+ T-cell proportion and high PB neutrophil counts predicted MR4.0 also in a validation cohort (n = 52) analyzed with flow cytometry. In summary, the CML BM is characterized by immune suppression and immune biomarkers predicted MR4.0, thus warranting further testing of immunomodulatory drugs in CML treatment
    corecore