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TO THE EDITOR:
The implementation of tyrosine kinase inhibitors (TKIs) has

dramatically improved the outcome of CML patients with the
overall survival approaching general population [1]. Hence, the
achievement of durable treatment-free remission (TFR) after TKI
discontinuation has emerged as a new treatment goal [2]. In
several studies, approximately half of CML patients in deep
molecular remission (DMR) can successfully maintain TFR after TKI
discontinuation [3]. Factors such as the duration of TKI treatment
and DMR prior to TKI stop, the 3month halving time, as well as the
number and function of immune cells, namely NK cells, have been
suggested to affect and predict the outcome of TKI discontinua-
tion [4–6].
Several recent studies have reported the association of somatic

mutations involving cancer-associated genes with treatment
outcome in chronic phase (CP) CML [7–10]. Mutations in
epigenetic modifier genes, such as ASXL1 and DNMT3A, represent
the major fraction of mutations in CP-CML [11]. Despite the
epigenetic modifier gene mutations being reported to associate
with inferior responses to TKI therapy [12], such mutations can
also be found in patients achieving DMR [7, 8] who would be
eligible for attempting TKI discontinuation. The role of somatic
mutations in predicting TFR has not been explored.
To investigate the potential effect of epigenetic modifier gene

variants on the outcome of TKI discontinuation, we analyzed
diagnostic samples from 47 CML patients who have attempted TKI
discontinuation using targeted sequencing of selected cancer-
associated genes. Our cohorts included 32 patients from the
Helsinki University Hospital (cohort 1) and 15 patients monitored
in South Australia (cohort 2). Only the availability of sample from
the time of diagnosis and later TKI discontinuation attempt were
used as selection criteria for the study. Loss of major molecular
response was encountered in 30 of 47 (64%) patients after TKI
discontinuation, while 17 of 47 (36%) patients maintained TFR. The
median follow-up time of patients who maintained TFR is
71months (12–138 months). Diagnostic samples were selected
for mutation profiling to enable the identification of somatic
cancer-associated mutations in CML leukemic cells, as at the time
of TKI discontinuation after sustained DMR, patients typically have
undetectable amount of leukemia cells left. Details on patient
characteristics and experimental methods are included in the
Supplemental Tables 1, 2 and Supplemental materials.
Overall, we identified cancer-associated mutations in 12 of 47

patients (26%) (Table 1), consistent with previous studies reporting

the presence of mutations to be 20% in CP patients with optimal
response to TKIs [7–10]. The majority of variants was identified in
diagnostic samples from patients who relapsed after TKI
discontinuation (10/30 patients, 33%) compared to patients
maintaining TFR (2/17 patients, 12%, p= 0.052) (Fig. 1a and
Supplemental Fig. 1). Mutations in the epigenetic modifier genes
were the most common mutation type (9/12, 75%). ASXL1 was the
most frequently mutated gene in 5 patients (Table 1). Other
mutated epigenetic modifier genes included KDM6A and DNMT3A.
Overall, mutations in epigenetic modifier genes were more
frequently encountered in patients who relapsed after TKI
discontinuation (8/30 patients, 27%) compared to patients who
maintained TFR (1/17 patients, 6%), p= 0.041 (Fig. 1b and
Supplemental Fig. 1).
Univariable and multivariable logistic regression analyses were

performed for predictive factors of TFR (variables used in the
analyses are listed in the Supplemental Table 3). Immunological
parameters were also included from the Euro-Ski patients [5] in
cohort 1. The presence of an epigenetic modifier gene variant and
the duration of TKI treatment prior to stop were predictive of the
TKI stop outcome in the univariable analysis (Supplemental Table
3). Patients with mutations in epigenetic modifier genes had
worse relapse-free survival (RFS) rates compared to patients
without mutations (median RFS 3.2 and 16.5 months respectively,
p= 0.024, hazard ratio= 3.55, 95% CI: 1.18–10.69) (Fig. 1c). We
also performed multivariable analysis, but only borderline
significant values were observed for the on-TKI duration and
presence of mutations at diagnosis (Supplemental Table 3).
Integration of the on-TKI duration to the epigenetic mutation
slightly improved the separation of groups, but the presence of
the epigenetic mutations seemed to be the strongest predictor of
relapse after TKI discontinuation (Fig. 1d).
ASXL1 was the only recurrently mutated gene in our study, and

it was detected in one patient who maintained TFR and four
relapse patients. This is in agreement with the reported
controversial prognostic value of ASXL1 mutations in CP-CML
[12]. Variants in other epigenetic modifier genes, such as KDM6A,
were only identified in relapse patients. Recurrent KDM6A
mutations have been previously reported in CP-CML [7]. KDM6A
is a histone lysine demethylase and a tumor suppressor, that is
recurrently mutated in AML (acute myeloid leukemia) [13],
multiple myeloma (MM) [14], and solid tumors [15]. KDM6A is a
key regulator of the development and the phenotype of various
immune cells, such as NK [16], NKT [17], and T cells [18]. KDM6A
has been reported to modulate immune surveillance in MM, via
the control of expression of major histocompatibility complex I
and II molecules [19]. Furthermore, KDM6A deletions in
medulloblastoma have been shown to impair immune cells
recruitment [15].
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Table 1. Cancer-related gene mutations in CML patients attempting TKI discontinuation.

Patient Outcome Variant Gene Predicted effect AA Change VAF

pt_1 relapse 20-32434638-AG-A ASXL1a frameshift deletion p.G643fs 5%

pt_2 relapse X-45079223-C-T KDM6Aa nonsense p.Q1058X 6%

pt_4 relapse 7-152177073-G-A KMT2Ca missense p.P2794S 44%

pt_5 relapse 12-49024702-C-T KMT2Da missense p.G5310R 27%

pt_9 relapse 1-85270827-AT-A BCL10 frameshift deletion p.I46fs 7%

pt_12 relapse 9-77922307-T-G GNAQ missense p.M59L 6%

pt_33 relapse 20-32435461-G-T ASXL1a nonsense p.E917* 50%

pt_34 relapse 20-32434789-C-T ASXL1a nonsense p.R693* 39%

pt_35 relapse 20-32436404-CCA-A ASXL1a frameshift deletion p.S1231fs 7%

pt_36 relapse 2-25243930-G-A DNMT3Aa missense p.R635Q 43%

pt_22 TFR 20-32434638-A-AG ASXL1a frameshift insertion p.G642fs 31%

pt_47 TFR 21-34880643-C-A RUNX1 nonsense p.S141* 17%

Outcome: outcome of TKI discontinuation, AA amino acid, VAF variant allele frequency.
aindicates epigenetic modifier genes.
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Fig. 1 The impact of epigenetic modifier gene mutations on the outcome of TKI discontinuation. Stacked columns comparing the
prevalence of mutations in a cancer-associated genes and b epigenetic modifier genes between relapse and TFR patient groups (n= 47, 30
relapse and 17 TFR patients). Cancer-associated mutations were identified in 10/30 relapse patients compared to 2/17 TFR patients. Epigenetic
modifier gene mutations were identified in 8/30 relapse patient compared to 1/17 TFR patients. The list of the identified mutations is provided
in Table 1. Survival curves comparing the relapse-free survival rates of patients (n= 47) classified according to c the presence of epigenetic
modifier gene mutations using log-rank test, d combinations of epigenetic modifier mutations and duration of TKI treatment prior to stop
using stratified log-rank test. Scatter plots showing e the sensitivity of K562-KDM6A-KO cells to NK cells (expanded from freshly isolated NK
cells from two different healthy donors’ buffy coats) induced cytotoxicity compared to control K562 cells, f Expression of CD107a
degranulation marker on CD56+NK cells cocultured with either K562_control or K562_KDM6A_KO cells (clones #1 and #2). (*) p < 0.05, Chi-
square test.
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Given the suggested important role of immune responses in
TFR and the reported role of KDM6A in modulating tumor immune
responses, we next investigated the functional consequences of
KDM6A mutations in CML cells as an example of relapse-
associated epigenetic modifier mutation. At first, we sorted
granulocyte, T-, NK-, and NKT-cell populations from diagnosis
and remission samples from the patient who relapsed after TKI
discontinuation and had a somatic stop-gain KDM6A mutation.
Deep amplicon sequencing was used to detect KDM6A mutation
from the sorted fractions, and interestingly, in the diagnostic
samples we identified KDM6A mutation to be present in both
granulocyte and NK-cell populations at a comparable VAF (8% and
6%, respectively), but not in the T- or NKT-cell populations. The
mutation was not found in any population in the remission
samples, suggesting the leukemic origin of the mutation, and that
KDM6A-mutated NK cells at diagnosis were part of the malignant
clone. This was confirmed by the detection of BCR-ABL hybrid in
NK cells at diagnosis (Supplemental Fig. 3a). Next, we wanted to
investigate the potential effect of KDM6A mutations on the
immune interactions between CML and NK cells. Using CRISPR/
Cas9 gene editing, we introduced knockout (KO) of KDM6A gene
in K562 CML cells. While the effects of KDM6A-KO were notable on
the status of histone acetylation and methylation in K562 cells,
there was no change in the sensitivity of K562 cells to TKIs
(Supplemental Fig. 3b, c). Interestingly, K562-KDM6A-KO cells
exhibited reduced sensitivity to NK-cell mediated cytotoxicity at
different E:T ratios, compared to control cells (p < 0.001). The
reduced sensitivity of K562-KDM6A-KO cells was preserved using
either expanded/activated NK cells or freshly isolated NK cells
from healthy donors (Fig. 1e, Supplemental Fig. 3d, e). In
accordance, NK cells showed reduced surface expression of
CD107a (degranulation marker) when cocultured with K562-
KDM6A-KO cells compared to coculture with control cells (Fig.
1f). In contrast, knockout of KDM6A in the cytotoxic NK-cell line,
NK-92, was not associated with reduced cytotoxic activity against
K562 cells (Supplemental Fig. 3f). Gene expression data from K562-
KDM6A-KO cells revealed downregulation of allograft rejection
and immune regulatory pathways, while drug transporters and
EZH2-targets were among the most upregulated genes (Supple-
mental Fig. 4). Interestingly, KDM6A loss has been reported to
enhance tumorigenicity of MM cells through unopposed EZH2
activity [14]. We also reanalyzed previously published [13] gene
expression data of K562 with KDM6A knockdown, and the antigen
processing and presentation pathway was similarly among the
most downregulated pathways in KDM6A knockdown cells.
In conclusion, our study provides novel insights of the potential

impact of somatic mutations detected at diagnosis on the outcomes
of treatment discontinuation in CML. The detection of mutations at
the diagnosis can potentially contribute to the choice of frontline
TKI, to negate the effect of mutations on the clinical outcome.
Accordingly, recent studies have shown that the frontline use of
second-generation TKIs potentially overcomes the negative impact
of epigenetic modifier gene mutations on CML CP patients’
treatment response [8]. Our findings also suggest a potential link
between some of the detected mutations, e.g., KDM6A mutations,
and impaired immune responses in CML. Such mutations occur,
however, in a small number of relapsed patients and cannot explain
all relapses. Thus, characterization of larger patient groups is needed
to increase understanding of the potential role of mutations in
modulating CML immune responses. To date, genetic screening is
not included in the current CML guidelines, despite recent evidence
of somatic mutations contributing to treatment outcomes. Further
studies are warranted to investigate the potential predictive value of
genetic data as a biomarker for relapse after TKI stop, which would
enable better selection of eligible patients for treatment
discontinuation.
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