30 research outputs found

    Secure Middlebox-Assisted QUIC

    Full text link
    While the evolution of the Internet was driven by the end-to-end model, it has been challenged by many flavors of middleboxes over the decades. Yet, the basic idea is still fundamental: reliability and security are usually realized end-to-end, where the strong trend towards ubiquitous traffic protection supports this notion. However, reasons to break up, or redefine the ends of, end-to-end connections have always been put forward in order to improve transport layer performance. Yet, the consolidation of the transport layer with the end-to-end security model as introduced by QUIC protects most protocol information from the network, thereby eliminating the ability to modify protocol exchanges. In this paper, we enhance QUIC to selectively expose information to intermediaries, thereby enabling endpoints to consciously insert middleboxes into an end-to-end encrypted QUIC connection while preserving its privacy, integrity, and authenticity. We evaluate our design in a distributed Performance Enhancing Proxy environment over satellite networks, finding that the performance improvements are dependent on the path and application layer properties: the higher the round-trip time and loss, and the more data is transferred over a connection, the higher the benefits of Secure Middlebox-Assisted QUIC

    Measuring DNS over TCP in the Era of Increasing DNS Response Sizes: A View from the Edge

    Full text link
    The Domain Name System (DNS) is one of the most crucial parts of the Internet. Although the original standard defined the usage of DNS over UDP (DoUDP) as well as DNS over TCP (DoTCP), UDP has become the predominant protocol used in the DNS. With the introduction of new Resource Records (RRs), the sizes of DNS responses have increased considerably. Since this can lead to truncation or IP fragmentation, the fallback to DoTCP as required by the standard ensures successful DNS responses by overcoming the size limitations of DoUDP. However, the effects of the usage of DoTCP by stub resolvers are not extensively studied to this date. We close this gap by presenting a view at DoTCP from the Edge, issuing 12.1M DNS requests from 2,500 probes toward Public as well as Probe DNS recursive resolvers. In our measurement study, we observe that DoTCP is generally slower than DoUDP, where the relative increase in Response Time is less than 37% for most resolvers. While optimizations to DoTCP can be leveraged to further reduce the response times, we show that support on Public resolvers is still missing, hence leaving room for optimizations in the future. Moreover, we also find that Public resolvers generally have comparable reliability for DoTCP and DoUDP. However, Probe resolvers show a significantly different behavior: DoTCP queries targeting Probe resolvers fail in 3 out of 4 cases, and, therefore, do not comply with the standard. This problem will only aggravate in the future: As DNS response sizes will continue to grow, the need for DoTCP will solidify.Comment: Published in ACM SIGCOMM Computer Communication Review Volume 52 Issue 2, April 202

    ECN with QUIC: Challenges in the Wild

    Full text link
    TCP and QUIC can both leverage ECN to avoid congestion loss and its retransmission overhead. However, both protocols require support of their remote endpoints and it took two decades since the initial standardization of ECN for TCP to reach 80% ECN support and more in the wild. In contrast, the QUIC standard mandates ECN support, but there are notable ambiguities that make it unclear if and how ECN can actually be used with QUIC on the Internet. Hence, in this paper, we analyze ECN support with QUIC in the wild: We conduct repeated measurements on more than 180M domains to identify HTTP/3 websites and analyze the underlying QUIC connections w.r.t. ECN support. We only find 20% of QUIC hosts, providing 6% of HTTP/3 websites, to mirror client ECN codepoints. Yet, mirroring ECN is only half of what is required for ECN with QUIC, as QUIC validates mirrored ECN codepoints to detect network impairments: We observe that less than 2% of QUIC hosts, providing less than 0.3% of HTTP/3 websites, pass this validation. We identify possible root causes in content providers not supporting ECN via QUIC and network impairments hindering ECN. We thus also characterize ECN with QUIC distributedly to traverse other paths and discuss our results w.r.t. QUIC and ECN innovations beyond QUIC.Comment: Accepted at the ACM Internet Measurement Conference 2023 (IMC'23

    On Cross-Layer Interactions of QUIC, Encrypted DNS and HTTP/3: Design, Evaluation and Dataset

    Full text link
    Every Web session involves a DNS resolution. While, in the last decade, we witnessed a promising trend towards an encrypted Web in general, DNS encryption has only recently gained traction with the standardisation of DNS over TLS (DoT) and DNS over HTTPS (DoH). Meanwhile, the rapid rise of QUIC deployment has now opened up an exciting opportunity to utilise the same protocol to not only encrypt Web communications, but also DNS. In this paper, we evaluate this benefit of using QUIC to coalesce name resolution via DNS over QUIC (DoQ), and Web content delivery via HTTP/3 (H3) with 0-RTT. We compare this scenario using several possible combinations where H3 is used in conjunction with DoH and DoQ, as well as the unencrypted DNS over UDP (DoUDP). We observe, that when using H3 1-RTT, page load times with DoH can get inflated by >>30\% over fixed-line and by >>50\% over mobile when compared to unencrypted DNS with DoUDP. However, this cost of encryption can be drastically reduced when encrypted connections are coalesced (DoQ + H3 0-RTT), thereby reducing the page load times by 1/3 over fixed-line and 1/2 over mobile, overall making connection coalescing with QUIC the best option for encrypted communication on the Internet.Comment: 15 pages, 12 figures and 2 table

    International Olympic Committee consensus statement on pain management in elite athletes

    Get PDF
    Pain is a common problem among elite athletes and is frequently associated with sport injury. Both pain and injury interfere with the performance of elite athletes. There are currently no evidence-based or consensus-based guidelines for the management of pain in elite athletes. Typically, pain management consists of the provision of analgesics, rest and physical therapy. More appropriately, a treatment strategy should address all contributors to pain including underlying pathophysiology, biomechanical abnormalities and psychosocial issues, and should employ therapies providing optimal benefit and minimal harm. To advance the development of a more standardised, evidence-informed approach to pain management in elite athletes, an IOC Consensus Group critically evaluated the current state of the science and practice of pain management in sport and prepared recommendations for a more unified approach to this important topic

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore