108 research outputs found

    Lääkärien kokemuksia ja näkemyksiä terveydenhuollon tietojärjestelmien kehittämisestä

    Get PDF
    Tutkimuksen tavoitteena oli selvittää lääkärien kokemuksia ja näkemyksiä terveydenhuollon tietojärjestelmien kehittämistyöstä ja ‐tarpeista. Aineisto kerättiin keväällä 2010 osana valtakunnallista ”Tietojärjestelmät lääkärin työvälineenä” kyselytutkimusta. Kyselyyn vastasi kolmannes kaikista potilastyötä tekevistä lääkäreistä (n=3929). Tulokset osoittavat, että lääkärien kokemukset kehittämistyöstä, erityisesti vaikutus‐ ja osallistumismahdollisuuksien puuttumisesta, ovat hyvin kriittisiä. Valtaosa kehittämistoiveista liittyi järjestelmien käytettävyyden parantamiseen ja nykyisistä potilastietojärjestelmistä puuttuviin toiminnallisuuksiin. Merkittävä osa lääkäreistä oli kiinnostunut osallistumaan tietojärjestelmien kehittämistyöhön. Tutkimuksen perusteella järjestelmien käytettävyydessä sekä loppukäyttäjien ja kehittäjien välisessä yhteistyössä on paljon kehitettävää. Tulevaisuudessa tulisi panostaa käyttäjälähtöisten ja käyttäjien osallistumista tukevien kehittämismenetelmien ja ‐käytäntöjen kehittämiseen ja käyttöönottoon

    The use of unlicensed bone marrow-derived platelet lysate-expanded mesenchymal stromal cells in colitis : a pre-clinical study

    Get PDF
    Background: Mesenchymal stromal cells (MSCs) are a promising candidate for treatment of inflammatory disorders, but their efficacy in human inflammatory bowel diseases (IBDs) has been inconsistent. Comparing the results from various preclinical and clinical IBD studies is also challenging due to a large variation in study designs. Methods: In this comparative pre-clinical study, we compared two administration routes and investigated the safety and feasibility of both fresh and cryo-preserved platelet-lysate-expanded human bone marrow-derived MSCs without additional licensing in a dextran sodium sulfate (DSS) colitis mouse model both in the acute and regenerative phases of colitis. Body weight, macroscopic score for inflammation and colonic interleukin (IL)-1 beta and tumor necrosis factor (TNF)alpha concentrations were determined in both phases of colitis. Additionally, histopathology was assessed and Il-1 beta and Agtr1a messenger RNA (mRNA) levels and angiotensin-converting enzyme (ACE) protein levels were measured in the colon in the regenerative phase of colitis. Results: Intravenously administered MSCs exhibited modest anti-inflammatory capacity in the acute phase of colitis by reducing IL-1 beta protein levels in the inflamed colon. There were no clear improvements in mice treated with fresh or cryopreserved unlicensed MSCs according to weight monitoring results, histopathology and macroscopic score results. Pro-inflammatory ACE protein expression and shedding were reduced by cryopreserved MSCs in the colon. Conclusions: In conclusion, we observed a good safety profile for bone marrow-derived platelet lysate-expanded MSCs in a mouse pre-clinical colitis model, but the therapeutic effect of MSCs prepared without additional licensing (i.e. such as MSCs are administered in graft-versus-host disease) was modest in the chosen in vivo model system and limited to biochemical improvements in cytokines without a clear benefit in histopathology or body weight development.Peer reviewe

    Systemic Blockade of ACVR2B Ligands Protects Myocardium from Acute Ischemia-Reperfusion Injury

    Get PDF
    Activin A and myostatin, members of the transforming growth factor (TGF)-b superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function following IR. ACVR2B-Fc modified cardiac metabolism, LV mitochondrial respiration, as well as cardiac phenotype toward physiological hypertrophy. Similar to its protective role in IR injury in vivo, ACVR2B-Fc antagonized SMAD2 signaling and cell death in cardiomyocytes that were subjected to hypoxic stress. ACVR2B ligand myostatin was found to exacerbate hypoxic stress. In addition to acute cardioprotection in ischemia, ACVR2B-Fc provided beneficial effects on cardiac function in prolonged cardiac stress in cardiotoxicity model. By blocking myostatin, ACVR2B-Fc potentially reduces cardiomyocyte death and modifies cardiomyocyte metabolism for hypoxic conditions to protect the heart from IR injury.Peer reviewe

    ALDH1A1-related stemness in high-grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTOR-PI3K/aurora kinase inhibitors

    Get PDF
    Poor chemotherapy response remains a major treatment challenge for high-grade serous ovarian cancer (HGSC). Cancer stem cells are the major contributors to relapse and treatment failure as they can survive conventional therapy. Our objectives were to characterise stemness features in primary patient-derived cell lines, correlate stemness markers with clinical outcome and test the response of our cells to both conventional and exploratory drugs. Tissue and ascites samples, treatment-naive and/or after neoadjuvant chemotherapy, were prospectively collected. Primary cancer cells, cultured under conditions favouring either adherent or spheroid growth, were tested for stemness markers; the same markers were analysed in tissue and correlated with chemotherapy response and survival. Drug sensitivity and resistance testing was performed with 306 oncology compounds. Spheroid growth condition HGSC cells showed increased stemness marker expression (including aldehyde dehydrogenase isoform I; ALDH1A1) as compared with adherent growth condition cells, and increased resistance to platinum and taxane. A set of eight stemness markers separated treatment-naive tumours into two clusters and identified a distinct subgroup of HGSC with enriched stemness features. Expression of ALDH1A1, but not most other stemness markers, was increased after neoadjuvant chemotherapy and its expression in treatment-naive tumours correlated with chemoresistance and reduced survival. In drug sensitivity and resistance testing, five compounds, including two PI3K-mTOR inhibitors, demonstrated significant activity in both cell culture conditions. Thirteen compounds, including EGFR, PI3K-mTOR and aurora kinase inhibitors, were more toxic to spheroid cells than adherent cells. Our results identify stemness markers in HGSC that are associated with a decreased response to conventional chemotherapy and reduced survival if expressed by treatment-naive tumours. EGFR, mTOR-PI3K and aurora kinase inhibitors are candidates for targeting this cell population. (c) 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.Peer reviewe

    MiR-185-5p regulates the development of myocardial fibrosis

    Get PDF
    Background: Cardiac fibrosis stiffens the ventricular wall, predisposes to cardiac arrhythmias and contributes to the development of heart failure. In the present study, our aim was to identify novel miRNAs that regulate the development of cardiac fibrosis and could serve as potential therapeutic targets for myocardial fibrosis. Methods and results: Analysis for cardiac samples from sudden cardiac death victims with extensive myocardial fibrosis as the primary cause of death identified dysregulation of miR-185-5p. Analysis of resident cardiac cells from mice subjected to experimental cardiac fibrosis model showed induction of miR-185-5p expression specifically in cardiac fibroblasts. In vitro, augmenting miR-185-5p induced collagen production and profibrotic activation in cardiac fibroblasts, whereas inhibition of miR-185-5p attenuated collagen production. In vivo, targeting miR-185-5p in mice abolished pressure overload induced cardiac interstitial fibrosis. Mechanistically, miR-185-5p targets apelin receptor and inhibits the anti-fibrotic effects of apelin. Finally, analysis of left ventricular tissue from patients with severe cardiomyopathy showed an increase in miR-185-5p expression together with pro-fibrotic TGF-beta 1 and collagen I. Conclusions: Our data show that miR-185-5p targets apelin receptor and promotes myocardial fibrosis.Peer reviewe

    \u3ci\u3eTrans\u3c/i\u3e-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus

    Get PDF
    Recent genome-wide association studies (GWAS) have identified variants associated with highdensity lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C–associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant

    Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) ('MetComp') and part by common modifiers of genetic risk ('GenComp'). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. Methods: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D-5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). Results: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the 'MetComp'. In contrast, the 'GenComp' was not accompanied by any substrate excess but was characterized by an increased hepaticmitochondrial redox state, as determined by serum beta-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum beta-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. Conclusions: These data show that the mechanisms underlying 'Metabolic' and 'Genetic' components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. Lay summary: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe

    Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort

    Get PDF
    Background: The gut microbiome is a complex and metabolically active community that directly influences host phenotypes. In this study, we profile gut microbiota using 16S rRNA gene sequencing in 531 well-phenotyped Finnish men from the Metabolic Syndrome In Men (METSIM) study.Results: We investigate gut microbiota relationships with a variety of factors that have an impact on the development of metabolic and cardiovascular traits. We identify novel associations between gut microbiota and fasting serum levels of a number of metabolites, including fatty acids, amino acids, lipids, and glucose. In particular, we detect associations with fasting plasma trimethylamine N-oxide (TMAO) levels, a gut microbiota-dependent metabolite associated with coronary artery disease and stroke. We further investigate the gut microbiota composition and microbiota–metabolite relationships in subjects with different body mass index and individuals with normal or altered oral glucose tolerance. Finally, we perform microbiota co-occurrence network analysis, which shows that certain metabolites strongly correlate with microbial community structure and that some of these correlations are specific for the pre-diabetic state.Conclusions: Our study identifies novel relationships between the composition of the gut microbiota and circulating metabolites and provides a resource for future studies to understand host–gut microbiota relationships
    corecore