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 Lipoprotein metabolism plays a key role in health and 
disease. Related measures, such as HDL and LDL choles-
terol, are in common use to describe individuals’ overall 
metabolic status and the potential risk for atherosclerosis 
and vascular complications. However, lipoprotein me-
tabolism appears signifi cantly more complex than just an 
interplay between HDL and LDL. Thus, information on 
lipoprotein subpopulations is presently needed to appreci-
ate the various counteracting metabolic phenomena and 
also to more accurately assess the risk for various vascular 
outcomes ( 1–3 ). 

 It is well established that the liver plays a central role in 
the apolipoprotein B (apoB) particle cascade, i.e . , the en-
dogenous transport system of lipids to various tissues, by 
producing and secreting VLDL particles into the circula-
tion ( 4–6 ). The hydrolysis of these particles by the lipopro-
tein lipase produces intermediate density lipoprotein 
(IDL) particles, some of which will further evolve to LDL. 
The counteracting lipid transport from the peripheral 

       Abstract   Plasma lipid concentrations cannot properly ac-
count for the complex interactions prevailing in lipoprotein 
(patho)physiology. Sequential ultracentrifugation (UCF) is 
the gold standard for physical lipoprotein isolations allow-
ing for subsequent analyses of the molecular composition 
of the particles. Due to labor and cost issues, however, the 
UCF-based isolations are usually done only for VLDL, LDL, 
and HDL fractions; sometimes with the addition of interme-
diate density lipoprotein (IDL) particles and the fraction-
ation of HDL into HDL 2  and HDL 3  (as done here; n = 302). 
We demonstrate via these data, with the lipoprotein lipid 
concentration and composition information combined, that 
the self-organizing map (SOM) analysis reveals a novel data-
driven in silico phenotyping of lipoprotein metabolism 
beyond the experimentally available classifi cations. The 
SOM-based fi ndings are biologically consistent with several 
well-known metabolic characteristics and also explain some 
apparent contradictions. The novelty is the inherent emer-
gence of complex lipoprotein associations; e.g., the meta-
bolic subgrouping of the associations between plasma LDL 
cholesterol concentrations and the structural subtypes of 
LDL particles. Importantly, lipoprotein concentrations can-
not pinpoint lipoprotein phenotypes.   It would generally 
be benefi cial to computationally enhance the UCF-based 
lipoprotein data as illustrated here. Particularly, the compo-
sitional variations within the lipoprotein particles appear 
to be a fundamental issue with metabolic and clinical 
corollaries.  —Kumpula, L. S., S. M. Mäkelä, V-P. Mäkinen, A. 
Karjalainen, J. M. Liinamaa, K. Kaski, M. J. Savolainen, M. L. 
Hannuksela, and M. Ala-Korpela.  Characterization of meta-
bolic interrelationships and in silico phenotyping of lipo-
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This new SOM approach was applied here to analyze and 
interpret the individual multivariate lipoprotein lipid data. 

 Logic 
 A characteristic feature of the SOMs is their ability to 

map nonlinear relations in multidimensional data sets 
into visually more approachable, typically two-dimensional 
planes of nodes. The overall concept of SOM analysis 
is illustrated in   Fig. 1  .  The input data to the SOM from 
each case  i , i.e., from each plasma sample in this par-
ticular application, contain a number of variables used 
to form a vector  d  i   =  (d ,d ,...d ,d )1

i
2
i

N 1
i

N
i

− . The SOM algo-
rithm ( 21, 26 ) then transforms the input data vectors 
into a two-dimensional map in which each node  j,k  
( j  goes over the rows and  k  over the columns, total of  J  
rows and  K  columns) will be represented by a single fea-
ture vector  x  j,k   =  (x ,x ,...,x ,x )1

j,k
2
j,k

N 1
j,k

N
j,k

−  representing the origi-
nal  N  dimensional space, i.e . , the input data. After the 
self-organizing process, the point density of the feature 
vectors follows roughly the probability density of the 
data, thereby making SOM a valuable tool for detecting 
similarities and groupings in a data set. The training algo-
rithm is rather simple (and also robust to missing values), 
and it is easy to visualize the resulting maps. The feature 
vectors of the neighboring nodes in the two-dimensional 
map are similar to each other and thereby, importantly, 
the individuals ending up in nodes close by are similar also 
in the original  N  dimensional space ( 21, 24, 27 ). 

 The visualization phase of the SOM analysis is two-fold: 
fi rst, to look at potential constellations of nodes (feature 
vectors) formed that would describe similar individuals 
(groups) in the original variable space; second, to depict 
input (or other related) variables over the two-dimensional 
map in order to obtain a quick overview of their distribu-
tion and values in different nodes, i.e., in the case of each 
feature vector. In other words, each node describes a 
model individual, which, in turn, bares a link to the indi-
viduals specifi ed in the original  N  dimensional space. The 
SOM algorithm, thus, offers the possibility to generate 
a form of average representations of model individuals 
along with identifying both metabolic and compositional 
characteristics and interrelationships out of multidimen-
sional and complex lipoprotein data. Comparing the 
component planes of two or more variables in the two-
dimensional map may provide insights into the dependen-
cies between the variables and their potential similarities 
or dissimilarities for the various groups of model individu-
als. The use of color coding in the component planes is 
particularly helpful because clearly colored areas as well as 
correlated changes in the colors of different variables are 
visually easy to detect. Although it is diffi cult to exactly de-
fi ne groups in the organized map, subtle changes in colors 
are also good in indicating potentially diffuse borderline 
areas between various clusters ( 27 ). 

 Lipoprotein data 
 The lipoprotein lipid data represent complex metabolic 

conditions. The SOM analysis of these data revealed group-
ings of input data parameters that characterize and defi ne 

tissues is regulated by HDL that is often divided into two 
subpopulations, namely larger HDL 2  and smaller HDL 3  
particles ( 7 ). Furthermore, the HDL metabolism and re-
verse cholesterol transport are related to the VLDL-IDL-
LDL cascade via lipid transfer proteins ( 8, 9 ). 

 Substantial amounts of data exist on alterations in circu-
lating lipoprotein concentrations, for example, in athero-
sclerosis and in metabolic disorders like diabetes and the 
metabolic syndrome that are familiar backgrounds for vari-
ous vascular complications ( 10–13 ). The structural integrity 
and pertinent molecular composition of lipoprotein parti-
cles are the basis for the proper functioning of lipoprotein 
metabolism ( 14–16 ). However, the molecular composition 
as well as the metabolic and structural interrelationships be-
tween lipoprotein particles are often hampered due to lim-
ited measurement data available and the molecular 
complexity of lipoprotein metabolism. Physical isolation of 
lipoproteins by sequential ultracentrifugation (UCF) is 
common to measure plasma lipoprotein concentrations 
( 17 ) but most studies are restricted regarding the analyzed 
subpopulations and detailed attention is rarely paid to the 
molecular composition of the isolated particles. 

 Here, we focus on an extensive set of UCF-based lipo-
protein data in which the apoB particles were isolated as 
VLDL, IDL, and LDL fractions and the HDL particles sep-
arated to HDL 2  and HDL 3  ( 18–20 ). The use of UCF is te-
dious and expensive and thus, most often only the total 
HDL fraction is physically isolated and the IDL fraction 
might not be separately spun. However, the current data 
set provides an experimental extreme available for clini-
cally oriented lipoprotein studies and was therefore 
considered optimal for assessing the capabilities of the 
self-organizing map (SOM) analysis to visualize and inter-
pret lipoprotein metabolism. In fact, the SOM analysis 
enabled a holistic combination of plasma lipoprotein 
concentrations and the corresponding compositional fea-
tures of the particles. Several well-known metabolic issues 
arose from the SOM analysis of these data per se. As a 
novel derivative, the analysis resulted in purely data-driven 
in silico lipoprotein phenotyping allowing detailed charac-
terization of various compositional and metabolic details 
beyond the experimentally available classifi cations. 

 SELF-ORGANIZING MAP ANALYSIS 

 Background 
 The SOM is an unsupervised pattern recognition tech-

nique ( 21 ) that organizes the input data according to given 
similarity criteria. The end result is a two-dimensional 
map, where mutually similar input data profi les are placed 
next to each other and on which all the measures can 
be easily visualized and compared. The SOM analysis is 
currently one of the most popular neural network meth-
ods already recognized as an effective and advantageous 
tool to handle complex data in various areas [see, for ex-
ample, refs ( 22–26 )]. We have also recently implemented 
and developed the SOM analysis into a metabonomics 
framework with incorporated p-value statistics ( 26–28 ). 
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males; 47% males). For some individuals, more than one sample 
was included from separate blood collections with a typical time 
interval of 6 months. The study population consisted of heavy al-
cohol drinkers (40%) ( 19 ), hysterectomised postmenopausal 
women on estrogen replacement therapy (41%) ( 20 ), and appar-
ently healthy control individuals (19%) ( 19 ), thereby represent-
ing a wide range of plasma lipoprotein lipid values. The 
phenotypic characteristics of the study population are discussed 
in supplementary information I. 

 Ethics statement 
 The study protocol was in accordance with the Declaration of 

Helsinki and approved by the Ethical Committee of the North-
ern Ostrobothnia Hospital District, Oulu, Finland, and written 
informed consent was obtained from all subjects. 

 Isolation and composition of lipoprotein fractions 
 The blood samples were drawn after an overnight fast of 12 h 

into EDTA-containing tubes. Plasma was separated by centrifuga-

model individuals according to both plasma lipid concen-
trations and lipoprotein particle compositions with a link 
to metabolic pathways. The component planes clarifi ed 
the clustering of the data set, i.e . , the grouping of model 
individuals into biochemically interpretable areas, for ex-
ample, in which the concentration of VLDL triglycerides 
(TGs) is high but that of IDL-TGs is low. It is important to 
realize that the formation of the models is based solely on 
the experimental data and the self-organizing process of 
the SOM algorithm as illustrated in  Fig. 1 . 

 MATERIALS AND METHODS 

 Subjects 
 Biochemical lipoprotein lipid analyses were available from 233 

individuals including 302 distinct lipid measurements (53% fe-

  Fig.   1.  A methodological overview and illustration of the overall concept of the self-organized map (SOM) analysis. An individual is de-
scribed by  N  lipoprotein lipid variables ( d   i  ) as illustrated by the histograms for the two different individuals on the left. Based on the indi-
vidual inputs, the SOM algorithm results in  j  ·  k  model individuals  x   j,k  , each having a defi nite location  j, k  in the map. All model individuals 
have the same amount of descriptive variables as the real individuals as illustrated by the histograms on the right. The feature vectors of the 
neighboring nodes (defi ning the model individuals and formed through the averaging process of the SOM algorithm) in the two-
dimensional map are similar to each other and thereby, importantly, the individuals ending up close by in the map are also similar in the 
original  N  dimensional space. The map illustrated in the middle is for the VLDL-TG, one of the 40 variables used as an input for the current 
SOM analysis, also shown as the fi rst bar in each histogram. The head-colors of the individuals and model individuals conceptually refer to 
the color-scale used in the component plane for the illustrated lipid variable; bluish colors refer to low and reddish colors to high values. 
Four lipid concentration measures per lipoprotein fraction were used, namely triglycerides (TG), phospholipids (PL), free cholesterol 
(FC), and cholesterol esters (CE), together with the corresponding compositional measures (marked with an asterisk) calculated by scaling 
the concentration measures with the protein amount in each fraction. VLDL, IDL, LDL, and HDL refer to very low, intermediate, low, and 
high density lipoprotein fractions, respectively.   
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valid. Consequently, q (instead of p) was used to denote the level 
of regional variability on the map ( 28 ). All the analyses were per-
formed using in-house scripts in the MATLAB programming en-
vironment. An open source package, termed Melikerion ( 26, 
27 ), for SOM analyses in the Matlab/Octave programming envi-
ronment is freely available. After constituting the SOM, the main 
regions with differing metabolic features were chosen by visual 
examination to further analyses. Some individuals residing in the 
borderline areas were excluded to result in clearer lipoprotein 
phenotypes. All the analyses were performed on a laptop PC with 
an Intel Core2 Duo, 2.0 GHz processor, which trained a typical 
SOM and calculated the colorings in a few minutes. 

 RESULTS AND DISCUSSION 

 General aspects of the self-organizing map 
 Conventionally, correlation analysis is applied to study 

linear associations between two lipoprotein measures. We 
have illustrated this for the current data set in supplemen-
tary information II, supplementary Fig. II. The correlation 
patterns imply that at an individual level the lipoprotein 
particle structure is rather consistent, but within each 
main lipoprotein fraction substantial compositional varia-
tion takes place (a detailed discussion is available in sup-
plementary information II). However, multiparametric 
and nonlinear relationships, inherent in lipoprotein me-
tabolism, remain intrinsically undetected in simple corre-
lation analyses between two variables. Hence, we will 
demonstrate how the SOM analysis can be used to extend 
beyond linear assumptions in a multiparametric manner. 

 The SOM analysis was performed using a combination 
of plasma lipoprotein lipid concentrations and composi-
tional lipoprotein particle measures as inputs (for details, 
see Materials and Methods, SOM analysis). The SOM com-
ponent planes for plasma concentration measures are il-
lustrated in   Fig. 2   and for compositional particle measures 
in   Fig. 3  .  The very same SOM analysis is the basis for all the 
component planes shown and thereby each of them can 
be directly compared, i.e., the distribution of the individ-
uals is the same under every component plane. Now, logi-
cally, these component planes should also uncover the key 
linear associations evident in supplementary information 
II, supplementary Fig. II. Consequently, within each lipo-
protein fraction, strong positive associations between 
plasma lipid concentrations (supplementary Fig. IIA) are 
clearly seen from the maps in  Fig. 2 ; for example, the sam-
ples with highest concentrations of VLDL lipids are clus-

tion at 1200–1500  g  for 10–15 min at 4°C. The lipoprotein frac-
tions were isolated from plasma by sequential UCF using density 
ranges of <1.006 g/ml for VLDL, 1.006–1.019 g/ml for IDL, 
1.019–1.063 g/ml for LDL, 1.063–1.125 g/ml for HDL 2 , and 
1.125–1.210 g/ml for HDL 3  ( 18–20 ). The lipoprotein fractions 
were isolated from fresh plasma samples and the lipid and pro-
tein analyses were commenced immediately after isolation of 
each fraction. The concentrations of total cholesterol, choles-
terol esters (CEs), TGs, phospholipids (PLs), and total protein 
in the isolated lipoprotein fractions were determined as de-
scribed previously ( 18, 19 ) and expressed as mmol/l in plasma 
for lipids and mg/dl for proteins (  Table 1  ).  

 SOM analysis 
 Four lipid concentration measures per lipoprotein fraction were 

used, namely TGs, PLs, free cholesterol (FC), and CEs, together with 
the corresponding compositional measures (marked with an aster-
isk) calculated by scaling the concentration measures with the total 
protein amount in each fraction (e.g . , VLDL-PL* = VLDL-PL/
VLDL-protein). These latter parameters are approximations for 
the number of lipid molecules (~mol/g) in each lipoprotein par-
ticle and thereby provide a measure of the molecular composition 
of the physically isolated lipoprotein fractions. The concentration 
and compositional lipid parameters were deliberately used to-
gether in the SOM analysis to enable direct association of the con-
centration and structural information. However, the compositional 
inputs (e.g . , VLDL-PL*) are not intuitive variables to interpret and 
therefore we have presented mass percentages (marked with two 
asterisks, e.g . , VLDL-PL**) in the SOM component planes to dem-
onstrate the compositional variability. Particle sizes for the VLDL, 
IDL, LDL, HDL 2 , and HDL 3  fractions were estimated as previously 
described ( 16 ). Briefl y, the number of lipid molecules in a particu-
lar lipoprotein particle was calculated on the basis of the experi-
mental data. The known average volumes of the lipid and protein 
molecules were then used to calculate the average particle size. 

 The input data were scaled between  � 1 and 1 by rank-
transformation for preventing unjustifi ed domination of any of 
the variables and then normalized to smooth the distribution of 
individuals into the grid. We chose a 5 × 7 map of hexagonal 
units (resulting in 8.6 samples per unit) and a Gaussian neigh-
borhood function. We also did several runs with different map 
sizes leading to essentially similar results, as expected, as SOM is 
known to be rather insensitive to choices of its size and other 
parameters ( 23 ). After the positions of the individuals on the 
SOM were computed, the map was colored according to the bio-
chemical variables within different parts of the SOM with overall 
permutation estimations for the p-values for the statistical signifi -
cance of the patterns ( 27 ). The null distributions from the per-
mutation analysis were also the basis of the color scale in each 
component plane so that variables can be compared visually 
while maintaining the statistical interpretation. When interpret-
ing the input variables, the p-value estimation is no longer strictly 

 TABLE 1. The average plasma lipid and protein concentrations and mass percentage compositions of the lipoprotein particles isolated via 
sequential ultracentrifugation 

TG C FC CE PL Protein TG C FC CE PL Protein

mmol/l mmol/l mmol/l mmol/l mmol/l mg/dl Mass- % Mass- % Mass- % Mass- % Mass- % Mass- %

VLDL (n � 294) 1.01 ± 1.58 0.50 ± 0.61 0.22 ± 0.32 0.28 ± 0.31 0.32 ± 0.43 19.7 ± 20.6 53 ± 6 17 ± 7 5 ± 2 12 ± 5 16 ± 4 14 ± 4
IDL (n � 256) 0.11 ± 0.07 0.25 ± 0.23 0.06 ± 0.07 0.19 ± 0.18 0.09 ± 0.08 6.45 ± 5.03 27 ± 11 37 ± 13 6 ± 3 31 ± 10 18 ± 6 18 ± 6
LDL (n � 300) 0.31 ± 0.14 3.39 ± 1.20 0.85 ± 0.33 2.54 ± 0.93 1.06 ± 0.42 89.0 ± 32.3 7 ± 3 49 ± 8 8 ± 2 41 ± 6 21 ± 4 23 ± 4
HDL 2  (n � 297) 0.17 ± 0.09 1.25 ± 0.60 0.23 ± 0.16 1.02 ± 0.47 1.00 ± 0.50 114.4 ± 44.3 6 ± 3 26 ± 5 3 ± 1 23 ± 4 27 ± 5 41 ± 6
HDL 3  (n � 278) 0.12 ± 0.08 0.75 ± 0.26 0.08 ± 0.06 0.68 ± 0.25 0.65 ± 0.19 137.0 ± 45.5 4 ± 3 19 ± 5 1 ± 1 18 ± 4 21 ± 4 56 ± 6

The values are given as mean ± SD. TG, triglycerides; C, cholesterol; FC, free cholesterol molecules; CE, cholesterol esters; PL, phospholipids; 
Protein, total proteins. The details for the lipoprotein isolation and lipid analysis are given in the Materials and Methods section.

 at T
erkko - N

ational Library of H
ealth S

ciences, on M
ay 16, 2016

w
w

w
.jlr.org

D
ow

nloaded from
 

.html 
http://www.jlr.org/content/suppl/2009/09/05/jlr.D000760.DC1
Supplemental Material can be found at:

http://www.jlr.org/
http://www.jlr.org/content/suppl/2009/09/05/jlr.D000760.DC1.html 
http://www.jlr.org/content/suppl/2009/09/05/jlr.D000760.DC1.html 


Lipoprotein phenotyping by SOM 435

nounced for the PLs, FC, CEs, cholesterol, and total lipids but 
somewhat different between the LDL-TG and HDL 2 -TG. 
This is most likely an indication of a nonstructural role of 
TG molecules in these lipoprotein particles. 

 Thus, the SOM analysis enables an unsupervised discov-
ery of multiple (nonlinear) associations; i.e . , in composite 
data, a nonexistent linear correlation does not necessarily 
mean that the two measures would have no association. 
As noted above for the LDL and HDL 2  lipid concentrations, 
various metabolic pathways may exist that have distinct but 
different associations that, in the linear analysis, mix in such 
a manner that no clear common correlation is found. 

 High concentration of plasma HDL 2  is associated with 
two different lipoprotein phenotypes 

 The high plasma concentrations of HDL 2  lipids (the 
southern region of the SOM in  Fig. 2 ) consistently associate 
with the low concentrations of plasma VLDL lipids ( 29 ) but 
differentiate into two subgroups with respect to LDL lipid 
concentrations. In the southeast region of the SOM, the 
high HDL 2  lipid concentrations relate to relatively high 
concentrations of plasma LDL lipids and large IDL, LDL, 
HDL 2 , and HDL 3  particles together with small VLDL ( Figs. 

tered in the northwest corner and those with high LDL 
lipid concentrations in the northeast and eastern areas of 
the map. The negative associations between VLDL and 
HDL 2  lipid concentrations are also clearly seen in  Fig. 2  via 
the opposite colorings for the VLDL and HDL 2  compo-
nent planes for PLs, FC, CEs, cholesterol, and total lipids. 

 Toward complex associations: LDL and HDL 2  
 In addition to the linear relationships (supplementary 

Fig. II), the SOM component planes shown in  Figs. 2 and 3  
are revealing further associations between the lipoprotein 
measures. For example, the SOM component planes in  Fig. 
2  give an explanation why the plasma concentrations of 
LDL lipids barely correlate with those of HDL 2  (supplemen-
tary Fig. IIA). The associations between LDL and HDL 2  
lipid concentrations are complex in such a way that differ-
ent metabolic models arose from the data in the SOM analy-
sis. Each of these models correspond to various combinations 
of lipoprotein concentrations; those refl ecting positive asso-
ciations between LDL and HDL 2  are separated in the south-
east and northwest areas of the SOM and those representing 
negative associations in the north-northeast and south-
southwest areas of the SOM. These associations are pro-

  Fig.   2.  Statistical colorings of the lipoprotein lipid concentration measures (in mmol/l) in the SOM analysis of the combined concentra-
tion and compositional lipoprotein variables. The coloring is according to the characteristics of the local residents within each hexagonal 
unit. The concentration levels are color-coded to visualize whether the concentration level is above (reddish), at (white) or below (bluish) 
the median of the variable. The numbers on selected units tell the local mean value for that particular region. The q-values below the plots 
indicate the probability of observing equivalent regional variability for random data (see Materials and Methods). Importantly, the very same 
SOM analysis is the basis for all the component planes shown (holds also for  Fig. 3 ) and thereby each of them can be directly compared; i.e . , 
the distribution of the individuals is the same under every component plane. The abbreviations are as given in the caption for  Fig. 1 .   
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high LDL-C concentration in plasma could be associated 
with both small and large LDL particles. Generally, the 
amounts of LDL particles seem not to be able to account 
for the LDL-C concentration in plasma, because with the 
similar LDL-C concentrations, the LDL-particle numbers 
can differ ( 34, 35 ). 

 Our current fi ndings via the SOM-based lipoprotein 
phenotyping indicate that the large LDL particles are as-
sociated with relatively high LDL-C (the southeast region 
of the SOM in  Figs. 2 and 3 ) and the small dense LDL 
particles are mostly related to low plasma LDL-C concen-
trations (the western half of the SOM in  Figs. 2 and 3 ). 
However, this association is not inclusive and there is a 
metabolic pathway in which the small dense LDL particles 
are related to high plasma LDL-C (the northeast region of 
the SOM in  Figs. 2 and 3 ). The small LDL particles related 
to the high plasma LDL-C concentration seem to be rather 
TG-poor whereas the small LDL associated with low plasma 
LDL-C is enriched in TGs. Thus, the apparent contradic-
tions noted above are most likely only refl ections of differ-
ent characteristics in the study populations. In fact, these 
associations are a good example of how simple (linear) 
correlation analysis is not able to reveal differently associ-
ated subgroups (nonlinearities) in the data. It is also no-
table that high concentration of plasma LDL-C associated 

2, 3 ). The LDL, HDL 2 , and HDL 3  particles are enriched in 
PLs and FC, whereas the VLDL and IDL particles are rela-
tively PL-poor. In contrast, in the southwest region of the 
SOM, the high plasma HDL 2  lipid concentrations are asso-
ciated with low concentrations of plasma lipids in all apoB-
containing lipoprotein particles, i.e . , VLDL, IDL, and LDL. 
All these apoB-particles are also relatively small. In general, 
it is evident from  Fig. 3  that there are clear associations be-
tween the lipoprotein particle size and the PL as well as the 
protein content of the particles, higher amounts of PL and 
lower amounts of protein indicating larger particles. 

 Plasma LDL-C concentration and the structural subtypes 
of LDL particles 

 Quite contradictory results have been published regard-
ing the association of plasma LDL-C concentrations with 
the composition and characteristics of LDL particles. It 
has been reported that small dense and large LDL particle 
distributions do not differ in plasma LDL-C concentration 
( 30, 31 ). On the other hand, large LDL particles have 
been connected to higher LDL-C concentrations than the 
predominance of small LDL particles ( 32 ). The binding of 
LDL particles to the LDL receptor has been shown to be 
reduced with dense as well as large LDL compared with 
LDL with intermediate particle sizes ( 33 ), indicating that 

  Fig.   3.  Statistical colorings of the compositional lipoprotein measures in the SOM analysis of the combined concentration and composi-
tional lipoprotein variables. For each lipoprotein fraction, the values are represented as mass percentages (**) for the lipids and protein 
or nm for the particle sizes. All other details are as given in the caption for  Fig. 2 . The abbreviations are as given in the caption for  Fig. 1 .   
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  Fig.   4.  A metabolic overview of the lipoprotein phenotypes arisen from the SOM analysis (illustrated in  Figs. 2 and 3 ). The application 
of the SOM analysis to the combination of concentration and compositional lipoprotein data resulted in a novel perspective and also pro-
vided a subgrouping of the lipoprotein particles in each fraction, i.e . , an in silico lipoprotein phenotyping beyond the experimental data. 
The term ‘lipoprotein phenotype’ is used here to denote a collection of lipoprotein subtypes for VLDL, IDL, LDL, HDL 2 , and HDL 3  related 
to a particular plasma lipoprotein concentration profi le and forming a metabolically connected entity. Five different phenotypes were 
discovered (A–E as marked and color-coded on the SOM), all with characteristic plasma concentration profi les (indicated in the bottom) 
as well as distinct compositional features (summarized on the top). The scale in the concentration profi les indicates the total plasma lipid 
concentrations of the lipoprotein fractions in mmol/l. The apoB-containing VLDL-IDL-LDL cascade is the principal route in the endoge-
nous lipoprotein metabolism and relates primarily to the transport and hydrolysis of TG. Thus, the metabolic pathways of the lipoprotein 
phenotypes are organized here in two platforms, one for TG-enriched (on the left, with an orange background) and one for TG-poor par-
ticles (on the right, with a bluish background). The HDL particles are also accordingly divided into two groups with respect to their relative 
TG content. The solid color-coded arrows represent the metabolic pathways of the apoB-containing lipoprotein particles within each lipo-
protein phenotype. The connections between apoB and HDL particles are indicated by the bidirectional dashed arrows. The sizes of apoB-
containing particles as well as HDL particles are in scale although the sizes of the HDL particles are enlarged by a factor of 6. The relative 
contents of the various lipids in the lipoprotein particles are indicated by the up- and down-ward arrows. Structurally characteristic lipids 
in each particle are bolded. The abbreviations are as given in the caption for  Fig. 1 .   
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with high amount of small LDL particles is particularly 
risky with respect to cardiovascular disease ( 36 ). 

 Metabolic pathways of the lipoprotein phenotypes 
 The application of the SOM analysis enabled us to con-

comitantly assess various metabolic and compositional in-
terrelationships between the experimentally isolated and 
characterized lipoprotein fractions. In fact, this appeared 
to be a novel viewpoint that also provided a detailed sub-
grouping of the lipoprotein particles within each fraction, 
i.e . , a detailed in silico lipoprotein phenotyping beyond 
the experimental data. The term ‘lipoprotein phenotype’ 
is used here to denote a collection of lipoprotein subtypes 
for VLDL, IDL, LDL, HDL 2 , and HDL 3  related to a partic-
ular plasma lipoprotein concentration profi le and forming 
a metabolically connected entity. An overview of the 
lipoprotein phenotypes arisen from the SOM analysis is 
given in   Fig. 4  .  The apoB-containing lipoprotein cascade, 
i.e . , VLDL-IDL-LDL, is a key route in the endogenous lipo-
protein metabolism and relates principally to the transport 
and hydrolysis of TG ( 6 ). Thus, in  Fig. 4,  the metabolic 
pathways of the lipoprotein phenotypes are organized in 
two platforms, one for TG-enriched and one for TG-poor 
particles (refl ecting the SOM analysis shown in  Fig. 3 ). The 
HDL particles are also accordingly divided into two groups 
with respect to their relative TG content. Five different li-
poprotein phenotypes were discovered, all with character-
istic plasma lipoprotein lipid concentration profi les, as well 
as distinct compositional and metabolic features. Some key 
fi ndings will be highlighted and discussed below. 

 A lipoprotein phenotype refl ecting characteristics of the 
metabolic syndrome 

  Figure 4  depicts lipoprotein phenotype B in which all 
the lipoprotein particles are enriched in TG except IDL 
being fairly TG-poor (see also the northwest region of the 
SOM in  Fig. 3 ). The VLDL particles in this phenotype are 
large and also enriched in PL and FC. However, the IDL 
and LDL particles are quite small. Interestingly, although 
VLDL particles are FC-enriched, the corresponding IDL, 
LDL, HDL 2 , and HDL 3  particles are FC-poor. The plasma 
concentration of VLDL total lipids is high but those of 
LDL and HDL 2  are low; the concentration of IDL total 
lipids is also somewhat elevated (see  Fig. 4  and the north-
west region of the SOM in  Fig. 2 ). Consequently, the char-
acteristics of lipoprotein phenotype B resemble those 
inherent for the metabolic syndrome ( 10 ). 

 These fi ndings are also in line with studies showing that 
the delipidation of large VLDL can produce low levels of 
LDL ( 37 ) and that large VLDL is related to small dense 
LDL ( 32, 38, 39 ). In addition, the small dense LDL pheno-
type has been linked to increased production and decreased 
catabolism of VLDL particles ( 40 ). This is consistent with 
our fi ndings here with respect to lipoprotein phenotype B 
in which the plasma concentration of VLDL is high and 
VLDL particles are large and TG-enriched, whereas the 
LDL lipid concentrations are low with the preponderance 
of small, TG-enriched LDL particles. It is also notable that 
the low percentage of FC in the IDL, LDL, and HDL parti-

cles of phenotype B may be a structural issue to enhance 
the oxidative susceptibility of these lipoproteins ( 41, 42 ). 

 Plasma lipoprotein concentrations do not predict 
lipoprotein phenotypes 

 Very similar plasma concentrations of VLDL and IDL in 
phenotypes A and E relate to signifi cantly different com-
position of the VLDL as well as IDL particles in these phe-
notypes; the VLDL and IDL particles in phenotype A are 
TG-enriched and CE-poor, the situation being the oppo-
site in the case of phenotype E. Also, high plasma LDL 
concentration, which is characteristic for phenotypes C, D, 
and E, relates to remarkable variations in the composition 
of the LDL particles between the phenotypes and, notably, 
even more profound differences in the composition as 
well as the size of the VLDL and IDL particles. 

 Lipoprotein metabolism is a complex crosstalk of various 
lipoprotein particles as well as enzymes and lipid transfer 
proteins. For example, during lipolysis of apoB-containing 
particles the phospholipid transfer protein increases the 
particle distribution of HDL toward HDL 2  subclasses 
( 9, 43 ). On the other hand, the cholesteryl ester transfer 
protein mediates heteroexchange of CE and TG between 
HDL and apoB-containing lipoprotein particles, the trans-
fer of TG being toward HDL and that of CE toward apoB-
containing particles ( 8, 16 ). Therefore, it is not unexpected 
that the plasma lipoprotein concentrations alone can only 
give a limited view on the overall lipoprotein metabolism. 

 Rationale for the in silico lipoprotein phenotyping 
 Even though detailed data on lipoprotein particles 

would currently be preferred in cardiovascular research, 
the subpopulation analysis is usually based on particle size 
(e.g . , using gradient gel electrophoresis or nuclear mag-
netic resonance spectroscopy) and therefore, the chemi-
cal composition of the particles remains unknown ( 7, 36 ). 
In analytical lipid biochemistry, sequential ultracentrifu-
gation is the gold standard for physical lipoprotein isola-
tion allowing for subsequent analyses of the molecular 
composition of the particles ( 18–20 ). However, the UCF-
based lipoprotein work is most often restricted regarding 
the analyzed subfractions. This is because the fi ner the 
density ranges used for the isolation, the more tedious and 
expensive the analyses become ( 44 ). Consequently, it 
would generally be benefi cial to computationally enhance 
the UCF-based lipoprotein data as illustrated in this work. 
In particular, deeper insight into the compositional varia-
tions in the lipoprotein particles appears a fundamental 
issue. The lipoprotein physiology and pathophysiology is 
about transfer and exchange of various lipid molecules be-
tween the lipoprotein particles and tissues. Thus, not only 
the concentration but also the quality of lipoprotein parti-
cles and the form of transportation does matter.  
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