19 research outputs found

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    The Lyavaraka Ultrabasic Complex, Serpentinite Belt, Kola Peninsula, Russia

    No full text
    The Paleoproterozoic Lyavaraka ultrabasic complex is one of several dunite–harzburgite–orthopyroxenite bodies exposed as shallow plutonic complexes in the Serpentinite Belt, Kola Peninsula, Russia. Lyavaraka and the other complexes are anorogenic, formed in a stable within-plate environment in the interval 2.5–2.4 Ga as members of a large igneous province formed in the Sumian cycle of igneous activity. This geotectonic setting accounts for the shallow emplacement of the strongly magnesian komatiitic magma in the Fennoscandian Shield. We recognize three stages of crystallization of the Al-undepleted magma, present as dislocated blocks. Zone I is the ultrabasic core-like zone in which olivine predominates. Orthopyroxene is the major mineral in Zone II, and Zone III contains the most evolved ultrabasic rocks in which recurrent olivine coexists with Cpx + Pl. Primocrysts of hypermagnesian Opx (Mg# 91–93) nucleated in central areas of Zone II as olivine (Mg# 89.1–90.3) was forming in Zone I. In Zone III, olivine grains of a second generation (Mg# 74.5–75.8) formed after the primocrystic Cpx (Mg# up to 88.0) appeared. The recurrence of olivine is attributed to the progressive buildup in fO2 as a result of degassing and conversion of Fe2+ to Fe3+, well documented in our earlier studies of oxide parageneses

    Corona-Type Textures in Ultrabasic Complexes of the Serpentinite Belt, Kola Peninsula, Russia

    No full text
    For the first time, corona-type textures are described in ultrabasic rocks in three complexes of the Serpentinite Belt on the Kola Peninsula in the northeastern Fennoscandian Shield. Three variants of the corona texture formed at different stages during the crystallization of a komatiitic, Al-undepleted melt emplaced in a subvolcanic setting. The first type crystallized at an early stage (Mg# Ol = 87) in a fine-grained harzburgite of the Chapesvara-I sill, with the following order in the corona: Ol → Opx → Cpx → Pl → Amp (aluminous sodic-calcic). The second type displays the sequence Opx → Cpx → Amp → Pl → Qz, which is observed in the orthopyroxenite zone in the Lotmvara-I sill. The third type involves a symplectitic corona in a plagioclase-bearing orthopyroxenite in the Lyavaraka complex, in which the inferred order is: Cpx → Amp (aluminous hornblende) + symplectitic Qz, formed in direct contact with grains of Pl. The corona-type textures occur in fresh rocks and are not related to regional metamorphism. They likely formed as consequences of two important factors: (1) rapid cooling, leading to unsteady conditions of crystallization in a shallow setting; and (2) an intrinsic enrichment in H2O and other volatiles in the parental magma, giving rise to fluid-saturated environments at advanced stages of crystallization. This was followed by a deuteric deposition of Amp rims as a result of the accumulation of H2O and reaction of H2O-bearing fluid with early grains of pyroxene and late plagioclase. The likely existence of a close relationship is suggested by the drusites of the Belomorian complex, which are coeval. In addition, unusual occurrences of lamellar inclusions of phlogopite and Al2SiO5 are documented, hosted by interstitial grains of plagioclase in the orthopyroxenite zone of the Lotmvara-I sill. These are attributed to crystallization from late portions of remaining melt enriched in Al, K, Na, H2O, and Cl, which is indicated by the recorded occurrence of chlorapatite in this association. Thus, our findings indicate the presence and abundance of intrinsic volatiles, Cl, F, CO2, and especially magmatic H2O, which were important to lower the liquidus, decrease the density and viscosity of the highly magnesian melt of Al-undepleted komatiite, thus enabling its transport from the mantle to a shallow level in the crust

    Zones of PGE–Chromite Mineralization in Relation to Crystallization of the Pados-Tundra Ultramafic Complex, Serpentinite Belt, Kola Peninsula, Russia

    No full text
    The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure

    Zones of PGE–Chromite Mineralization in Relation to Crystallization of the Pados-Tundra Ultramafic Complex, Serpentinite Belt, Kola Peninsula, Russia

    No full text
    The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure

    Chrysidide nouvelle [Hym.]

    No full text
    Buysson Robert du. Chrysidide nouvelle [Hym.]. In: Bulletin de la Société entomologique de France, volume 12 (8),1907. p. 138
    corecore