21 research outputs found

    Polarized far-infrared and Raman spectra of SrCuO2 single crystals

    Full text link
    We measured polarized far-infrared reflectivity and Raman scattering spectra of SrCuO2_2 single crystals. The frequencies for infrared-active modes were determined using an oscillator-fitting procedure of reflectivity data. The Raman spectra were measured at different temperatures using several laser energies ωL\omega_L. In addition to eight of twelve Raman active modes, predicted by factor-group analysis, we observed a complex structure in the Raman spectra for polarization parallel to the {\bf c}-axis, which consists of Raman-allowed Ag_g symmetry modes, and B1u_{1u} LO infrared-active (Raman-forbidden) modes of the first and higher order as well as their combinations. The Raman-forbidden modes have a stronger intensity at higher ωL\omega_L than the Raman-allowed ones. In order to explain this resonance effect, we measured the dielectric function and optical reflection spectra of SrCuO2_2 in the visible range. We show that the Raman-allowed Ag_g symmetry modes are resonantly enhanced when a laser energy is close to E0E_0, while Raman-forbidden (IR-active) modes resonate strongly for laser line energies close to the electronic transition of higher energy gaps.Comment: to be published in Physica

    Lattice vibrations of alpha'-NaV_2O_5 in the low-temperature phase. Magnetic bound states?

    Full text link
    We report high resolution polarized infrared studies of the quarter-filled spin ladder compound alpha'-NaV_2O_5 as a function of temperature (5K <= T <= 300K). Numerous new modes were detected below the temperature T_c=34K of the phase transition into a charge ordered nonmagnetic state accompanied by a lattice dimerization. We analyse the Brillouin zone (BZ) folding due to lattice dimerization at T_c and show that some peculiarities of the low-temperature vibrational spectrum come from quadruplets folded from the BZ point (1/2, 1/2, 1/4). We discuss an earlier interpretation of the 70, 107, and 133cm-1 modes as magnetic bound states and propose the alternative interpretation as folded phonon modes strongly interacting with charge and spin excitations.Comment: 15 pages, 13 Postscript figure

    Charge-ordering phase transition and order-disorder effects in the Raman spectra of NaV2O5

    Full text link
    In the ac polarized Raman spectra of NaV2O5 we have found anomalous phonon broadening, and an energy shift of the low-frequency mode as a function of the temperature. These effects are related to the breaking of translational symmetry, caused by electrical disorder that originates from the fluctuating nature of the V {4.5+} valence state of vanadium. The structural correlation length, obtained from comparisons between the measured and calculated Raman scattering spectra, diverges at T< 5 K, indicating the existence of the long-range charge order at very low temperatures, probably at T=0 K.Comment: 8 pages, 4 figures, new version, to appear in PR

    Temperature dependence of optical spectral weights in quarter-filled ladder systems

    Full text link
    The temperature dependence of the integrated optical conductivity I(T) reflects the changes of the kinetic energy as spin and charge correlations develop. It provides a unique way to explore experimentally the kinetic properties of strongly correlated systems. We calculated I(T) in the frame of a t-J-V model at quarter-filling for ladder systems, like NaV_2O_5, and show that the measured strong T dependence of I(T) for NaV_2O_5 can be explained by the destruction of short range antiferromagnetic correlations. Thus I(T) provides detailed information about super-exchange and magnetic energy scales.Comment: 4 pages, 5 figure

    Spin-Peierls transition in NaV2O5 in high magnetic fields

    Get PDF
    We investigate the magnetic field dependence of the spin-Peierls transition in NaV2_2O5_5 in the field range 16T-30T. The transition temperature exhibits a very weak variation with the field, suggesting a novel mechanism for the formation of the spin-Peierls state. We argue that a charge ordering transition accompanied by singlet formation is consistent with our observations.Comment: 4 pages, 3 figures, final version to appear in Phys. Rev. B (RC

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α′\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los

    A microscopic model for the structural transition and spin gap formation in alpha'-NaV2O5

    Full text link
    We present a microscopic model for alpha'-NaV2O5. Using an extended Hubbard model for the vanadium layers we derive an effective low-energy model consisting of pseudospin Ising chains and Heisenberg chains coupled to each other. We find a ``spin-Peierls-Ising'' phase transition which causes charge ordering on every second ladder and superexchange alternation on the other ladders. This transition can be identified with the first transition of the two closeby transitions observed in experiment. Due to charge ordering the effective coupling between the lattice and the superexchange is enhanced. This is demonstrated within a Slater-Koster approximation. It leads to a second instability with superexchange alternation on the charge-ordered ladders due to an alternating shift of the O sites on the rungs of that ladder. We can explain within our model the observed spin gap, the anomalous BCS ratio, and the anomalous shift of the critical temperature of the first transition in a magnetic field. To test the calculated superstructure we determine the low-energy magnon dispersion and find agreement with experiment.Comment: 32 pages, 12 figures include

    Multiscale modelling for fusion and fission materials: the M4F project

    Get PDF
    The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and its effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project)

    The study of temperature and radiation induced degradation of cable polymers: A comparison between the mechanical properties of industrial and neat EPDM

    Get PDF
    AbstractThe mechanical properties of industrial and neat Ethylene Propylene Diene Monomer (EPDM) polymers, aged under Îł-irradiation at different temperatures, are studied. The focus is given to the dose rate effects in polymer insulation materials, so the ageing is performed in the wide range of dose rates, doses and temperatures. Industrial EPDM samples are extracted from the cables in use in Belgian Nuclear Power Plants (NPP), and the neat EPDM samples are produced in the laboratory. The mechanical tests of non-aged and aged polymers are performed, and the methodology of estimating the polymer life time is discussed. The ultimate tensile stress and elongation at break are found to be strongly affected by both irradiation condition and temperature. The ultimate tensile stress clearly exhibits the dose rate effect observed through the shift of the crossover between cross-linking to chain scission process as a function of the dose. This crossover shifts to high dose for large dose rates, while the opposite is observed by increasing the temperature. Dose rate effect is less evident in the elongation at break data, probably because both cross-linking and chain scission affect the elongation at break in the same way, by decreasing it. In comparison to industrial EPDM aged under the same conditions, the cross-linking to chain scission crossover appears at lower dose in neat polymer and the elongation at break decreases faster by increasing the dose. In addition, the elongation at break experimental results can be modeled by changing single parameter, namely pre-exponential factor of the irradiation rate constant. This confirms that both aging processes, cross-linking and chain scission affect the elongation at break in a similar way, by deteriorating network structure responsible for polymer elastic properties. Irradiation rate constant is found to follow the square root dependence for industrial EPDM, while the linear dependence is observed for the neat EPDM. This indicates the existence of different degradation processes in these two polymers
    corecore