6 research outputs found

    Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain

    Get PDF
    Adoptive transfer of T lymphocytes transduced with a T cell receptor (TCR) to impart tumor reactivity has been reported as a potential strategy to redirect immune responses to target cancer cells (Schumacher, T.N. 2002. Nat. Rev. Immunol. 2:512–519). However, the affinity of most TCRs specific for shared tumor antigens that can be isolated is usually low. Thus, strategies to increase the affinity of TCRs or the functional avidity of TCR-transduced T cells might be therapeutically beneficial. Because glycosylation affects the flexibility, movement, and interactions of surface molecules, we tested if selectively removing conserved N-glycoslyation sites in the constant regions of TCR α or β chains could increase the functional avidity of T cells transduced with such modified TCRs. We observed enhanced functional avidity and improved recognition of tumor cells by T cells harboring TCR chains with reduced N-glycosylation (ΔTCR) as compared with T cells with wild-type (WT) TCR chains. T cells transduced with WT or ΔTCR chains bound tetramer equivalently at 4°C, but tetramer binding was enhanced at 37°C, predominantly as a result of reduced tetramer dissociation. This suggested a temperature-dependent mechanism such as TCR movement in the cell surface or structural changes of the TCR allowing improved multimerization. This strategy was effective with mouse and human TCRs specific for different antigens and, thus, should be readily translated to TCRs with any specificity

    Ein einfaches Gerät zur Niveaugleichhaltung der Probeflüssigkeit in Flammenphotometern

    No full text

    CD206+ tumor-associated macrophages cross-present tumor antigen and drive anti-tumor immunity.

    No full text
    In many solid cancers, tumor-associated macrophages (TAM) represent the predominant myeloid cell population. Antigen (Ag) cross-presentation leading to tumor Ag-directed cytotoxic CD8+ T cell responses is crucial for anti-tumor immunity. However, the role of recruited monocyte-derived macrophages, including TAM, as potential cross-presenting cells is not well understood. Here, we show that primary human as well as mouse CD206+ macrophages are effective in functional cross-presentation of soluble self and non-self Ag, including tumor-associated Ag (TAA) as well as viral Ag. To confirm the presence of cross-presenting TAM in vivo, we performed phenotypic and functional analysis of TAM from B16-F10 and CT26 syngeneic tumor models and have identified CD11b+F4/80hiCD206+ TAM to effectively cross-present TAA. We show that CD11b+CD206+ TAM represent the dominant tumor-infiltrating myeloid cell population, expressing a unique cell surface repertoire, promoting Ag cross-presentation and Ag-specific CD8+ T cell activation comparable to cross-presenting CLEC9A+ dendritic cells (cDC1). The presence of cross-presenting CD206+ TAM is associated with reduced tumor burden in mouse syngeneic tumor models and with improved overall survival in cutaneous melanoma patients. Therefore, the demonstration of effective Ag cross-presentation capabilities of CD206+ TAM, including their clinical relevance, expands our understanding of TAM phenotypic diversity and functional versatility
    corecore