14 research outputs found
āļāļēāļĢāđāļāļĢāļĩāļĒāļĄāđāļĨāļ°āļāļēāļĢāļĻāļķāļāļĐāļēāļāļļāļāļŠāļĄāļāļąāļāļīāļāļāļāļāļāļļāļ āļēāļāļāļēāđāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļ Preparation and Characterization of Curcumin-loaded Bovine Serum Albumin Nanoparticles
āļāļāļāļąāļāļĒāđāļ
āļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđ: āđāļāļ·āđāļāļĻāļķāļāļĐāļēāļŦāļēāļ§āļīāļāļĩāļāļēāļĢāđāļāļĢāļĩāļĒāļĄāļāļāļļāļ āļēāļāļāļēāđāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļ āđāļāļ·āđāļāđāļŦāđāļĄāļĩāļāļļāļāļŠāļĄāļāļąāļāļīāļāļēāļāđāļāļĄāļĩāļāļīāļŠāļīāļāļŠāđāđāļĨāļ°āļāļĢāļīāļĄāļēāļāļāļēāļĢāļāļąāļāđāļāđāļāļĒāļēāļāļēāļĄāļāđāļāļāļāļēāļĢ āļ§āļīāļāļĩāļāļēāļĢāļĻāļķāļāļĐāļē:Â āđāļāļĢāļĩāļĒāļĄāļāļāļļāļ āļēāļāļāļēāđāļāļāļāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļāļāđāļ§āļĒāļ§āļīāļāļĩāļāļĩāđāļāļĨāđāļ§āļāļąāđāļ āđāļāļĒāđāļĄāđāđāļāđāļāļĨāļđāļāļēāļĢāđāļāļąāļĨāļāļĩāļŪāļąāļĒāļāđāđāļāđāļāļŠāļēāļĢāļāđāļāļāļĢāļāļŠāļĨāļīāļāļāđ āđāļĨāļ°āļĻāļķāļāļĐāļēāļŠāļ āļēāļ§āļ°āļāđāļēāļ āđ āđāļāļāļēāļĢāđāļāļĢāļĩāļĒāļĄ āđāļāđāđāļāđ āļāļ§āļēāļĄāđāļāđāļĄāļāđāļāļāļāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļ āđāļĨāļ°āļāļąāļāļĢāļēāļŠāđāļ§āļāđāļāļĒāļāļĢāļīāļĄāļēāļāļĢāļāļāļāļāđāļģāļāđāļāđāļāļāļēāļāļāļĨ āļāļĩāđāļĄāļĩāļāļĨāļāđāļāļāļāļēāļāļāļāļļāļ āļēāļ āļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļāļāļāļāļēāļāļāļāļļāļ āļēāļ āđāļĨāļ°āļĻāļąāļāļĒāđāđāļāļāđāļēāļāļāļāļīāļ§āļāļāļļāļ āļēāļ āļĢāļ§āļĄāļāļąāđāļāļ§āļīāļāļĩāļāļēāļĢāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļāļāļĩāđāđāļāļāļāđāļēāļāļāļąāļ 3 āļ§āļīāļāļĩāļĨāļāđāļāļāļāļļāļ āļēāļāļāļēāđāļāļāļĩāđāļŠāđāļāļāļĨāļāđāļāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļĨāļ°āļāļĢāļīāļĄāļēāļāļāļēāļĢāļāļąāļāđāļāđāļāļĒāļē āļāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļāļēāļĢāđāļāļīāđāļĄāļāļ§āļēāļĄāđāļāđāļĄāļāđāļāļāļāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļĢāļ§āļĄāļāļąāđāļāļāļĢāļīāļĄāļēāļāļāđāļģāđāļāļŠāđāļ§āļāļāļŠāļĄāļāđāļģ-āđāļāļāļēāļāļāļĨ āļāļģāđāļŦāđāļāļāļēāļāļāļāļļāļ āļēāļāļāļēāđāļāđāļŦāļāđāļāļķāđāļ āđāļĨāļ°āļāļĢāļ°āļāļļāđāļāļāđāļēāļĨāļāļāļāļāļīāļ§āļāļāļļāļ āļēāļāļĨāļāļĨāļ āļŠāļ āļēāļ§āļ°āļāļēāļĢāđāļāļĢāļĩāļĒāļĄāļāļĩāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļ·āļ āļāļ§āļēāļĄāđāļāđāļĄāļāđāļāļāļāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļĢāđāļāļĒāļĨāļ° 20 āđāļāļĒāļāđāļģāļŦāļāļąāļ āđāļĨāļ°āļāļąāļāļĢāļēāļŠāđāļ§āļāđāļāļĒāļāļĢāļīāļĄāļēāļāļĢāļāļāļāļāđāļģāļāđāļāđāļāļāļēāļāļāļĨ 1:6 āļāļāļļāļ āļēāļāļāļēāđāļāļāļāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļāļāļĩāđāđāļāļĢāļĩāļĒāļĄāđāļāđāļĄāļĩāļāļāļēāļāļāļĒāļđāđāđāļāļāđāļ§āļ 195.14 Âą 9.11 āļāļķāļ 256.80 Âą 72.06 āļāļēāđāļāđāļĄāļāļĢ āļāđāļēāļāļąāļāļāļĩāļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļāļēāļāļāļĩāđāđāļāļāļĄāļēāļāļāļĒāļđāđāđāļāļāđāļ§āļ 0.064 Âą 0.024 āļāļķāļ 0.092 Âą 0.049 āđāļĨāļ°āļāđāļēāļĻāļąāļāļĒāđāđāļāļāđāļēāļāļāļāļīāļ§āļāļāļļāļ āļēāļāļāļĒāļđāđāđāļāļāđāļ§āļ -8.10 Âą 0.30 āļāļķāļ -9.73 Âą 0.63 āļĄāļīāļĨāļĨāļīāđāļ§āļĨāļāđ āļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļĨāļ°āļāļĢāļīāļĄāļēāļāļāļēāļĢāļāļąāļāđāļāđāļāļĒāļēāļāļĒāļđāđāđāļāļāđāļ§āļāļĢāđāļāļĒāļĨāļ° 17.40 Âą 8.23 āļāļķāļ 28.59 Âą 3.52 āđāļĨāļ°āļĢāđāļāļĒāļĨāļ° 1.77 Âą 0.59 āļāļķāļ 2.46 Âą 0.35 āļāļēāļĄāļĨāļģāļāļąāļ āļ§āļīāļāļĩāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļāđāļāļāļāļļāļ āļēāļāļāļēāđāļ 3 āļ§āļīāļāļĩāđāļĄāđāļĄāļĩāļāļĨāļāđāļāļāļļāļāļĨāļąāļāļĐāļāļ°āļāļēāļāđāļāļĄāļĩāļāļīāļŠāļīāļāļŠāđ āļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļĨāļ°āļāļĢāļīāļĄāļēāļāļāļēāļĢāļāļąāļāđāļāđāļāļĒāļē āļŠāļĢāļļāļ: āļŠāļēāļĄāļēāļĢāļāđāļāļĢāļĩāļĒāļĄāļāļāļļāļ āļēāļāļāļēāđāļāđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļāļāļĩāđāļĄāļĩāļāļļāļāļŠāļĄāļāļąāļāļīāļāļēāļĄāļāđāļāļāļāļēāļĢ āđāļāļĒāđāļĄāđāđāļāđāļāļĨāļđāļāļēāļĢāđāļāļąāļĨāļāļĩāļŪāļąāļĒāļāđ Â āđāļĨāļ°āļ§āļīāļāļĩāļāļēāļĢāļāļĢāļĢāļāļļāđāļāļāļĢāđāļāļīāļ§āļĄāļīāļ 3 āļ§āļīāļāļĩāđāļĄāđāļĄāļĩāļāļĨāļāđāļāļāļļāļāļĨāļąāļāļĐāļāļ°āļāļēāļāđāļāļĄāļĩāļāļīāļŠāļīāļāļŠāđ āļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļĨāļ°āļāļĢāļīāļĄāļēāļāļāļēāļĢāļāļąāļāđāļāđāļāļĒāļē
āļāļģāļŠāļģāļāļąāļ: āđāļāļāļĢāđāļāļīāļ§āļĄāļīāļ; āļāļāļļāļ āļēāļāļāļēāđāļ; āļ§āļīāļāļĩāļāļĩāđāļāļĨāđāļ§āļāļąāđāļ; āđāļāđāļ§āļāđāļāļĩāļĢāļąāđāļĄāļāļąāļĨāļāļđāļĄāļīāļ
Abstract
Objective: To explore various preparation by desolvation methods of curcumin-loaded bovine serum albumin nanoparticles (CUR-BSA-NPs) to obtain desired physicochemical properties and drug loading. Method: CUR-BSA-NPs were prepared by desolvation method without using glutaraldehyde as cross-linking agent. The influences of bovine serum albumin (BSA) concentration and water to ethanol volume ratio on size, size distribution, and particle surface charge were examined. The effects of 3 different loading methods of CUR into CUR-BSA-NPs on entrapment efficiency and loading capacity were also investigated. Results: The increase in BSA concentration and amount of water in water-ethanol mixture resulted in larger BSA-NPs with less negative surface charge. The optimum conditions from the screening results using 20 mg/mL BSA concentration and 1:6 water to ethanol volume ratio were chosen for preparation of CUR-BSA-NPs with 3 different loading methods. The sizes of CUR-BSA-NPs ranged from 195.14 Âą 9.11 to 256.80 Âą 72.06 nm and polydispersity indices of extremely narrow size distribution ranged from 0.064 Âą 0.024 to 0.092 Âą 0.049. The zeta potentials were in the range from -8.10 Âą 0.30 to -9.73 Âą 0.63 mV. The entrapment efficiency and loading capacity were in the range from 17.40 Âą 8.23 to 28.59 Âą 3.52 % and 1.77 Âą 0.59 to 2.46 Âą 0.35 %, respectively. The 3 different CUR loading methods into CUR-BSA-NPs were found to impose no significant effects on physicochemical characteristics, entrapment efficiency, and loading capacity. Conclusion: The CUR-BSA-NPs with desired properties could be developed by desolvation method without using glutaraldehyde. The 3 different loading methods of CUR into CUR-BSA-NPs had no significant effects on physicochemical characteristics, entrapment efficiency, and loading capacity of CUR-BSA-NPs.
Keywords: curcumin; nanoparticles; desolvation method; bovine serum albumi
Development of curcumin liposome formulations using polyol dilution method
This study was aimed to formulate curcumin liposomes (CLs) by using polyol dilution method which is advantageous
for no residue of organic solvent. CLs were the mixture of hydrogenated phosphatidylcholine (PC) and cholesterol (CH) at
the molar ratio of 9:1. Propylene glycol (PG), glycerin, and polyethylene glycol 400 (PEG-400) were used as polyol solvent.
Extrusion was applied after the suspension formed. The amount of polyol and curcumin and preparing temperature were
investigated. The obtained suspensions were observed for appearance, size, size distribution, zeta potential, morphology,
and percentage of entrapment. The results showed that type and amount of polyol had an impact on both liposomal size and
the amount of entrapped curcumin, while preparing temperature was also an important factor. However, the solubility of lipids
and drug in a given polyol should be considered because of loading efficiency in the formulation
Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease
Exosomes are cell-derived vesicles that act as carriers for proteins and nucleic acids, with therapeutic potential and high biocompatibility. We propose a new concept of exosome-like liposomes for controlled delivery.
The goal of this work was to develop a new type of liposomes with a unique mixture of phospholipids, similar to naturally occurring exosomes but overcoming their limitations of heterogeneity and low productivity, for therapeutic delivery of bioactive compounds. Curcumin was chosen as model compound, as it is a phytochemical molecule known to have antioxidant and anti-inflammatory properties, which can protect the brain against oxidative stress and reduce Îē-amyloid accumulation, major hallmarks of Alzheimer's disease (AD).
These new liposomes can efficiently encapsulate hydrophobic curcumin, yielding particles with a size smaller than 200 nm, and a polydispersity index lower than 0.20, which make them ideal for crossing the blood-brain barrier. These particles have a long shelf life, being stable up to 6 months. The curcumin encapsulation efficiency was higher than 85% (up to approximately 94%). Curcumin-loaded liposomes were not cytotoxic (up to 20 ΞM curcumin, and 200 ΞM of exo-liposomes), and significantly reduced oxidative stress induced in SH-SY5Y neuronal cells, indicating their potential for neuroprotection. They also do not show any toxicity and are internalized in zebrafish embryos, concentrating in lipid enriched areas, as the brain and the yolk sac.
Such innovative carriers are a new effective approach to deliver drugs into the brain, as these are stable, protect the cargo and are uptaken by neuronal cells. Upon internalization, liposomes release the therapeutic biomolecules, resulting in successful neuroprotection, being a positive alternative strategy for AD therapy.Strategic Programme UID/BIA/04050/2020 funded by National funds through the FundaçÃĢo para a CiÊncia e Tecnologia I.P., and the project âFUN2CYT: Harnessing the Potential for Biomedical Applications of Pleiotropic Cytokines LIF and Oncostatin Mâ (POCI-01-0145-FEDER-030568), supported by Programa Operacional Competitividade e InternacionalizaçÃĢo (FEDER) and FCT, IP. MÃĄrio Fernandes (SFRH/BD/147819/2019) and ClÃĄudia Botelho (SFRH/BPD/111291/2015) hold scholarships from FundaçÃĢo para a CiÊncia e Tecnologia, and Ivo Lopes is a recipient of a scholarship from the DireçÃĢo Regional da CiÊncia e Tecnologia, Governo Regional dos Açores (M3.1.a/F/128/2015).info:eu-repo/semantics/publishedVersio