10 research outputs found

    Early phase observations of extremely luminous Type Ia Supernova 2009dc

    Get PDF
    We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is Δm15(B)=0.65±0.03\Delta m_{15}(B)=0.65\pm 0.03, which is one of the slowest among SNe Ia. The peak VV-band absolute magnitude is MV=19.90±0.15M_{V}=-19.90\pm 0.15 mag even if the host extinction is AV=0A_{V}=0 mag. It reaches MV=20.19±0.19M_{V}=-20.19\pm 0.19 mag for the host extinction of AV=0.29A_{V}=0.29 mag as inferred from the observed Na {\sc i} D line absorption in the host. Our JHKsJHK_{s}-band photometry shows that the SN is one of the most luminous SNe Ia also in near-infrared wavelengths. These results indicate that SN 2009dc belongs to the most luminous class of SNe Ia, like SN 2003fg and SN 2006gz. We estimate the ejected 56^{56}Ni mass of 1.2±0.31.2\pm 0.3 \Msun for no host extinction case (or 1.6±\pm 0.4 M_{\odot} for the host extinction of AV=0.29A_{V}=0.29 mag). The C {\sc ii} λ\lambda6580 absorption line keeps visible until a week after maximum, which diminished in SN 2006gz before its maximum brightness. The line velocity of Si {\sc ii} λ\lambda6355 is about 8000 km s1^{-1} around the maximum, being considerably slower than that of SN 2006gz, while comparable to that of SN 2003fg. The velocity of the C {\sc ii} line is almost comparable to that of the Si {\sc ii}. The presence of the carbon line suggests that thick unburned C+O layers remain after the explosion. SN 2009dc is a plausible candidate of the super-Chandrasekhar mass SNe Ia

    PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovered a rapid (about 5 days duration), high-energy (E >100 MeV) gamma-ray outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3 1502+10, z=1.839) starting on August 05, 2008 and followed by bright and variable flux over the next few months. Results on the gamma-ray localization and identification, as well as spectral and temporal behavior during the first months of the Fermi all-sky survey are reported here in conjunction with a multi-waveband characterization as a result of one of the first Fermi multi-frequency campaigns. The campaign included a Swift ToO (followed up by 16-day observations on August 07-22, MJD 54685-54700), VLBA (within the MOJAVE program), Owens Valley (OVRO) 40m, Effelsberg-100m, Metsahovi-14m, RATAN-600 and Kanata-Hiroshima radio/optical observations. Results from the analysis of archival observations by INTEGRAL, XMM-Newton and Spitzer space telescopes are reported for a more complete picture of this new gamma-ray blazar.Comment: 17 pages, 11 figures, accepted for The Astrophysical Journa

    Emerging roles of ATG proteins and membrane lipids in autophagosome formation

    No full text

    Autophagy in neuronal cells: general principles and physiological and pathological functions

    No full text

    JCS/JHRS 2019 guideline on non‐pharmacotherapy of cardiac arrhythmias

    No full text

    Writing, erasing and reading histone lysine methylations

    No full text

    Lasers

    No full text
    corecore