60 research outputs found

    Psychiatric nurses’ observation techniques

    Get PDF
    The purpose of this study was to clarify characteristics of psychiatric nurses’ observation techniques for psychopathological symptoms. The subjects were 21 psychiatric nurses and 20 nursing students who had finished their practicum in psychiatric nursing. Using a non-contact eye-tracking analysis system, we compared quantitatively their radial motion while they were observing psychopathological symptoms of a schizophrenia simulation patient. The radial motion of them was recorded while they were observing a video of a simulated patient presenting psychopathological symptoms, and the recording was analyzed by the eye-tracking system. The investigator set the important observation areas and determined the sum of the fixation time and the number of fixations in the areas. Differences between psychiatric nurses and nursing students were tested using the Mann-Whitney U-test. The results revealed a significant difference in observation of the upper limbs area with a median of 7147.90 msec for nurses group and a median of 2447.54 msec for students group (U = 98.00, p = 0.01). The finding suggests that nurses tend to pay more attention to patient’s upper limbs to be cautious about possible violence and to find agitation caused by psychopathological symptoms, extrapyramidal adverse effects, and scars caused by self-mutilation

    Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus

    Get PDF
    Synchronous oscillations of thousands of cellular clocks in the suprachiasmatic nucleus (SCN), the circadian centre, are coordinated by precisely timed cell–cell communication, the principle of which is largely unknown. Here we show that the amount of RGS16 (regulator of G protein signalling 16), a protein known to inactivate Gαi, increases at a selective circadian time to allow time-dependent activation of intracellular cyclic AMP signalling in the SCN. Gene ablation of Rgs16 leads to the loss of circadian production of cAMP and as a result lengthens circadian period of behavioural rhythm. The temporally precise regulation of the cAMP signal by clock-controlled RGS16 is needed for the dorsomedial SCN to maintain a normal phase-relationship to the ventrolateral SCN. Thus, RGS16-dependent temporal regulation of intracellular G protein signalling coordinates the intercellular synchrony of SCN pacemaker neurons and thereby defines the 24 h rhythm in behaviour

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Rhythmic Nucleotide Synthesis in the Liver: Temporal Segregation of Metabolites

    Get PDF
    The synthesis of nucleotides in the body is centrally controlled by the liver, via salvage or de novo synthesis. We reveal a pervasive circadian influence on hepatic nucleotide metabolism, from rhythmic gene expression of rate-limiting enzymes to oscillating nucleotide metabolome in wild-type (WT) mice. Genetic disruption of the hepatic clock leads to aberrant expression of these enzymes, together with anomalous nucleotide rhythms, such as constant low levels of ATP with an excess in uric acid, the degradation product of purines. These results clearly demonstrate that the hepatic circadian clock orchestrates nucleotide synthesis and degradation. This circadian metabolome timetable, obtained using state-of-the-art capillary electrophoresis time-of-flight mass spectrometry, will guide further investigations in nucleotide metabolism-related disorders

    Immunolocalization of murine type VI 3β-hydroxysteroid dehydrogenase in the adrenal gland, testis, skin, and placenta.

    Get PDF
    The enzyme 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD) is essential for the biosynthesis of all active steroid hormones, such as those secreted from the adrenal gland, testis, ovary, skin and placenta. The 3β-HSD enzymes exist in multiple isoforms in humans and rodents. To date, six different isoforms have been identified in the mouse, and these isoforms are speculated to play different roles in different tissues. We previously showed that the murine type VI 3β-HSD isoform (Hsd3b6) is expressed specifically in the aldosterone-producing zona glomerulosa cells within the adrenal gland and that its overexpression causes abnormally increased aldosterone synthesis, revealing a crucial (or rate-limiting) role of this enzyme in steroidogenesis. However, potential contributions of this enzyme to the steroid hormone synthesis outside the adrenal glands are poorly understood. This paucity of knowledge is partly because of the lack of isoform-specific antibody that can be used for immunohistochemistry. Here, we report the development and characterization of specific antibody to Hsd3b6 and show the results of immunohistochemistry for the adrenal gland, testis, ovary, skin and placenta. As expected, Hsd3b6 immunoreactivities within the adrenal gland were essentially confined to the zona glomerulosa cells, where aldosterone is produced. By contrast, no immunopositive cells were observed in the zona fasciculata, which is where corticosterone is produced. In the gonads, while the ovaries did not show any detectable immunoreactivity to Hsd3b6, the testes displayed intense immunoreactivities within the interstitial Leydig cells, where testosterone is produced. In the skin, positive immunoreactivities to Hsd3b6 were only seen in the sebaceous glands, suggesting a specific role of this enzyme in sebaceous function. Moreover, in the placenta, Hsd3b6 was specifically found in the giant trophoblast cells surrounding the embryonic cavity, which suggests a role for this enzyme in local progesterone production that is required for proper embryonic implantation and/or maintenance of pregnancy. Taken together, our data revealed that Hsd3b6 is localized in multiple specific tissues and cell types, perhaps thereby involved in biosynthesis of a number of tissue-specific steroid hormones with different physiological roles

    Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila

    No full text
    Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3′-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG
    corecore