
Title Rhythmic Nucleotide Synthesis in the Liver: Temporal
Segregation of Metabolites

Author(s) Fustin, Jean-Michel; Doi, Masao; Yamada, Hiroyuki; Komatsu,
Rie; Shimba, Shigeki; Okamura, Hitoshi

Citation Cell Reports (2012), 1(4): 341-349

Issue Date 2012-04

URL http://hdl.handle.net/2433/156139

Right © 2012 The Authors. Published by Elsevier Inc.

Type Journal Article

Textversion author

Kyoto University



                             Elsevier Editorial System(tm) for Cell Reports 
                                  Manuscript Draft 
 
 
Manuscript Number: CELL-REPORTS-D-11-00090R2 
 
Title: Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites.  
 
Article Type: Report 
 
Keywords: circadian; metabolome; purine; pyrimidine; nucleotide synthesis 
 
Corresponding Author: Professor Hitoshi Okamura, M.D., Ph.D. 
 
Corresponding Author's Institution: Kyoto University 
 
First Author: Jean-Michel Fustin 
 
Order of Authors: Jean-Michel Fustin; Masao Doi; Hiroyuki Yamada; Rie Komatsu; Shigeki Shimba; 
Hitoshi Okamura, M.D., Ph.D. 
 
Abstract: The synthesis of nucleotides in the body is centrally controlled by the liver, via salvage or de 
novo synthesis. We reveal a pervasive circadian influence on hepatic nucleotide metabolism, from 
rhythmic gene expression of rate-limiting enzymes to oscillating nucleotide metabolome in WT mice. 
Genetic disruption of the hepatic clock leads to aberrant expression of these enzymes, together with 
anomalous nucleotide rhythms, such as constant low levels of ATP with an excess in uric acid, the 
degradation product of purines. These results clearly demonstrate that the hepatic circadian clock 
orchestrates nucleotide synthesis and degradation. This circadian metabolome time-table, obtained 
using state-of-the-art Capillary Electrophoresis Time-of-Flight Mass Spectrometry, will guide further 
investigations in nucleotide metabolism-related disorders. 
 
 
 
 



Dear Dr. Sabbi Lall, Scientific Editor for Cell Reports, 

 

Thank you very much for your positive and encouraging letter. We were delighted by the reception 

our revisions received from you and the two reviewers. 

We have of course modified the manuscript according to the two last comments made by the 

reviewers. The title has changed and does not include the word “metabolome”, and the discussion on 

page 5 has been slightly modified. 

The character count of the manuscript is 33,858, slightly above the 32,000 limit. We hope it is 

acceptable, since we feel that excessive shortening of the manuscript would hamper the clear 

understanding of our message for non-specialists. Please let us know. 

Thank you for your continued consideration, 

Okamura Hitoshi 

Kyoto University 

Department of Systems Biology 

Graduate School of Pharmaceutical Sciences 

46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku,  

Kyoto 606-8501, Japan 

TEL : +81-75-753-9552 

okamurah@pharm.kyoto-u.ac.jp 

Cover Letter



Response to reviewer’s comments 

Thanks you very much again for the encouragements you gave to our manuscript. We have of course 

changed it according to your justified comments. 

 

For the reviewer #1: 

-New title: “Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites.” This 

title does not contain the word “metabolome” anymore. However, we felt that it needed a more 

specific statement in addition to simply “Rhythmic nucleotide synthesis in the liver”. Therefore, we 

added the last part of the title, based on the cluster analysis data. We hope this is acceptable. 

For the reviewer #2: 

-Final paragraph on top of page 5 has been changed to: “Together these data suggest the rhythmic 

de novo synthesis is under predominant systemic control, but modulated by the local liver clock.” 

We hope this will satisfy. 

 

 

*Response to Reviewers



Graphical Abstract
Click here to download Graphical Abstract: graphical abstract.eps

http://ees.elsevier.com/cell-reports/download.aspx?id=284183&guid=5dd480bb-5bc1-4777-9a7e-3b2606705136&scheme=1


Highlights: 

-Nucleotide synthesis and degradation is controlled by the hepatic clock. 

-Loss of hepatic clock leads to low nucleotide abundance. 

-Loss of hepatic clock leads to high uric acid levels. 

 

Highlights



Rhythmic nucleotide synthesis in the liver. 

 
 

1 
 

Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. 

Jean-Michel Fustin
1
, Masao Doi

1
, Hiroyuki Yamada

1
, Rie Komatsu

1
, Shigeki Shimba

2
, Hitoshi 

Okamura
1,3

 

1: Kyoto University, Graduate School of Pharmaceutical Sciences, Department of System 

Biology, Graduate School of Pharmaceutical Sciences, 46-29 Yoshida-Shimo-Adachi-cho, 

Sakyo-ku, Kyoto, 606-8501, Japan. 

2: Department of Health Science, College of Pharmacy, Nihon University, Funabashi, Chiba, 

274-8555, Japan. 

3: Corresponding author:  

okamurah@pharm.kyoto-u.ac.jp  

Fax: +81-(0)75-753-9553 

Phone: +81-(0)75-753-9552 

 

 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/cell-reports/viewRCResults.aspx?pdf=1&docID=8829&rev=2&fileID=284182&msid={36FD7575-1848-4E1E-9894-823C17EE0CBF}


Rhythmic nucleotide synthesis in the liver. 

 
 

2 
 

Summary 

The synthesis of nucleotides in the body is centrally controlled by the liver, via salvage or de novo 

synthesis. We reveal a pervasive circadian influence on hepatic nucleotide metabolism, from 

rhythmic gene expression of rate-limiting enzymes to oscillating nucleotide metabolome in WT 

mice. Genetic disruption of the hepatic clock leads to aberrant expression of these enzymes, 

together with anomalous nucleotide rhythms, such as constant low levels of ATP with an excess 

in uric acid, the degradation product of purines. These results clearly demonstrate that the 

hepatic circadian clock orchestrates nucleotide synthesis and degradation. This circadian 

metabolome time-table, obtained using state-of-the-art Capillary Electrophoresis Time-of-Flight 

Mass Spectrometry, will guide further investigations in nucleotide metabolism-related disorders. 
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Introduction 

The circadian clock synchronises physiology and behaviour to the appropriate time of day and 

endogenously generates rhythms under constant conditions. The clock regulates the 

transcription of thousands of target clock-controlled genes involved in fundamental metabolic 

pathways (Akhtar et al., 2002; Lamia et al., 2008; Panda et al., 2002; Reddy et al., 2006; Ueda 

et al., 2002; Vollmers et al., 2009), but the metabolic consequences of such regulation often 

remain to be described.  

Two essential discoveries, the circadian control of the cell cycle (Matsuo et al., 2003) and DNA 

repair (Kang et al., 2010) in the liver, suggest the supply of nucleotides itself is regulated by the 

circadian clock. Since the liver is a site of active de novo nucleotide synthesis and controls the 

supply of free bases and nucleosides to other tissues for salvage (Barsotti et al., 2002; Cansev, 

2006; Cao et al., 2005; Gasser et al., 1981), the circadian control of hepatic nucleotide 

metabolism will have wide implications for the body.  

To define the role of the hepatic clock in the control of nucleotide metabolism, we analysed 

gene expression and metabolome of wild-type and liver Bmal1-deficient mice (Bmal1
L-/-

), which 

show rhythmic activity and food intake but lack a functional molecular clock in the liver driving 

hepatic physiology (Shimba et al., 2011). We show that the expression of rate-limiting enzymes 

in nucleotide metabolism is under clock-control, and that nucleotides are rhythmic and time-

segregated. In Bmal1
L-/-

 liver, aberrant expression of these enzymes is correlated with the 

disruption of nucleotide rhythms. In particular, ATP and was constantly low and uric acid was 

increased, suggesting inefficient purine synthesis and/or increased degradation. We here provide 

the first integrated transcriptome and metabolome circadian timetable focussed on a single 

metabolic pathway, in order to give insights into the physiological importance of the local 

hepatic clock for nucleotide synthesis, relevant for cancer chemotherapy and for the treatment of 

nucleotide imbalance disorders such as gout. 
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Results 

The expression of genes involved in purine and pyrimidine nucleotide metabolism (KEGG 

mmu00230 and 00240, initially screened for rhythmic expression in microarray dataset at 

http://circadian.salk.edu) was analysed by quantitative real-time PCR from WT liver samples 

dissected every 4 hours during 24 hours. To avoid external interferences on the endogenous 

circadian clock, mice were housed in constant dark (DD) conditions with food and water ad 

libitum. To investigate the role of the liver circadian clock in the control of nucleotide 

biosynthesis, gene expression was analysed in clock-less liver generated by liver-specific 

disruption of the clock gene Bmal1 (Shimba et al., 2011). The loss of temporal hepatic 

organisation was confirmed by the absence of Bmal1 transcript and the aberrant rhythms of 

clock gene expression (Supplemental figure 1). For the sake of clarity, we only report genes that 

showed significant variations of expression (p<0.05 in one-way ANOVA in WT). The results 

presented here are largely consistent with previous microarray datasets (Vollmers et al., 2009), 

but some genes showing very low-amplitude oscillations on microarray were not significant in 

our analysis.  

Rate-limiting enzymes in de novo nucleotide synthesis  

De novo synthesis of nucleotides, with multiple enzymatic steps mediated by different genes, 

leads to the synthesis of inosine monophosphate (IMP, Fig. 1A) or uridine monophosphate 

(UMP, Fig. 1B), precursors for other nucleotides. The rate-limiting enzymes in the de novo 

synthesis of IMP (Ppat) (Nelson et al., 2008) and UMP (Cad and Umps) (Traut, 2009; Traut and 

Jones, 1977), showed significant circadian rhythms of expression. In Bmal1
L-/-

 liver, their 

expression was significantly affected (Ppat showing elevated levels) but still displayed a 

rhythmic component. 
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The de novo synthesis of CTP from UTP is mediated by two enzymes called CTP synthases. 

Two isoforms exist, Ctps (cytosolic) and Ctps2 (mitochondrial), both mediating the rate-limiting 

step in the synthesis of cytidine nucleotides. Ctps expression was circadian but Ctps2 showed 

significant bimodal variations. In Bmal1
L-/-

 liver, both genes still displayed rhythmic expression 

with lower amplitude but with a two-fold increase in baseline. 

Together these data suggest the rhythmic de novo synthesis is under predominant systemic 

control, but modulated by the local liver clock. 

Mitochondrial nucleotide monophosphate kinases  

The phosphorylation of nucleotide monophosphates, mediated by specific kinases, is a critical 

step towards the synthesis of NTPs (Nelson et al., 2008). Among these kinases, only the 

mitochondrial isoforms Ak2, Ak4 (Fig.1A) and Cmpk2 (Fig. 1B) showed significant rhythmic 

expressions. Ak2 and Ak4 showed identical waveforms in WT and were similarly affected in 

Bmal1
L-/-

, showing lower expression with a bimodal pattern. Cmpk2 in contrast showed higher 

expression in Bmal1
L-/-

 but remained rhythmic. This suggests that the rhythmic supply of 

nucleotide diphosphate, ADP in particular, is important in the mitochondria where ATP is 

synthesised. Lower Ak expression but higher Cmpk2 expression may cause an imbalance in 

purine/pyrimidine content. 

dNDP synthesis is controlled by the circadian clock 

Deoxynucleotide synthesis from nucleotide diphosphate is mediated by a single enzyme called 

ribonucleotide reductase M (RRM). RRM is composed of two subunits, RRM1 and RRM2 

(Nelson et al., 2008), the latter being rate-limiting for the activity of the enzyme (Zuckerman et 

al., 2011). Rrm1 expression in liver was constant; while Rrm2 displayed pronounced circadian 

variations (Fig. 1 and Sup. figure 2B). Nadir Rrm2 mRNA levels were three times lower than 

those of Rrm1, while at peak level they were equivalent, suggesting indeed a circadian control of 
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RRM activity via regulation of Rrm2 expression. In Bmal1
L-/-

 liver, Rrm2 remained constantly 

low. This particular enzyme is interesting since it operates both on purines and pyrimidines, and 

since the synthesis of dNTPs is specifically for DNA replication and repair. Lower Rrm2 

expression in clock-less liver may cause dNTPs insufficiency and hamper liver regeneration 

after injury. 

Nucleotide degradation and salvage 

The degradation of nucleosides to free bases, an important step for their subsequent salvage by 

other tissues (Balestri et al., 2007; Griffiths and Stratford, 1997; Markert, 1991; Pizzorno et al., 

2002), is mediated by nucleoside phosphorylases. All hepatic nucleoside phosphorylases showed 

significant and high-amplitude rhythmic expression: Pnp (Fig. 1A), Tymp and Upp2 (Fig. 1B). 

Pnp, Tymp and Upp2 were highly expressed in the liver compared to other tissues (Sup. figure 

2A), but Upp1 was barely detectable and was not significant (Sup. figure 2B). In addition, Tk1 

and Tk2, salvaging thymidine to dTMP in the cytoplasm and mitochondria respectively (Munch-

Petersen, 2010), were rhythmically expressed in the liver (Fig. 1B). 

In Bmal1
L-/-

 liver, Upp2 expression lost its peak at CT12 and showed a low bimodal pattern. 

Tymp and Pnp showed increased expression, but with a residual rhythm of lower amplitude. Tk1 

and Tk2 were both significantly affected, showing higher baseline and bimodal expression. 

Together these results suggest that the hepatic clock, together with systemic cues, orchestrate 

nucleotide synthesis and degradation. To test this hypothesis, we quantified circadian liver 

metabolome by Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOFMS) in WT 

mice, every 4 hours during 24 hours. 

Rhythmic abundance of bases, nucleosides and nucleotides by CE-TOFMS 

CE-TOFMS analysis of liver metabolome revealed pervasive rhythms in free purine and 

pyrimidine bases, nucleosides and nucleotides (Fig. 2A and B).  
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The rhythms of IMP and UMP were similar to that of the expression of their own synthetic 

enzymes: Ppat and IMP rose during the day, Cad and Umps peaked at night with UMP. 

The purine nucleotides ADP, ATP, GDP and GTP all had similar phases (Fig. 2A), which is 

consistent with the two parallel branches of the purine pathway. Since ATP allosterically 

regulates the synthesis of GMP from IMP, it is likely that the rhythm observed for ATP drives 

that of GTP. In contrast, all cytidine nucleotides showed significant bimodal patterns (Fig. 2B), 

very similar to Ctps2 expression. In contrast, UDP and UTP did not show significant variations.  

The purine bases adenine and guanine peaked at night, rising at the end of the day in a pattern 

similar to Pnp expression and in antiphase to adenosine and guanosine. Similarly, uridine 

abundance was antiphasic to Upp2 expression. Due to efficient degradation of pyrimidine free 

bases to soluble metabolites in the liver, the uracil rhythm closely mirrored that of uridine an 

order of magnitude lower. Since no cytidine phosphorylase has so far been discovered in 

mammals, it is likely that the rhythms observed for cytidine and cytosine depend mostly on 

digestion. A similar rhythm in cytidine, peaking during the subjective day, was previously 

reported in a partial circadian metabolomics study from mouse plasma (Minami et al., 2009). 

Hierarchical clustering by Pearson correlation (Fig. 2C) revealed that purines are time-

segregated, with nucleotides peaking in the mid-subjective day, followed by nucleosides at 

CT12, then by the adenine and guanine bases at CT16. ATP and GTP originate from the two 

opposite branches of the purine pathway but are perfectly synchronous. Clearly, a tight 

regulation of purines operates, resulting in a constant ratio between ATP and GTP throughout 

the day. Adenosine nucleotides are the most abundant purines (Sup. figure 3A), reflecting their 

metabolic importance. 

Hierarchical clustering of pyrimidines revealed a different pattern (Fig. 2D). Here, the highest 

level of temporal organisation reflected the nature of the base used, either uracil or cytosine. 



Rhythmic nucleotide synthesis in the liver. 

 
 

8 
 

This underlines the differences between the two parallel and symmetric branches of the purine 

pathway versus the asymmetric and serial pyrimidine pathway (compare Fig. 1A and B). The 

most abundant pyrimidine is UMP, consistent with it being the precursor for all other 

pyrimidine nucleotides (Supplemental figure 3B).  

Similar to the disrupted rhythmic expression of genes presented in Fig. 1, we predict that the 

nucleotide rhythms presented here will likewise be affected by the loss of the hepatic clock. 

Loss of liver clock affects nucleotide rhythms and abundance 

To determine which nucleotide rhythms and abundance are affected by the loss of the hepatic 

clock, we compared the nucleotide metabolome of Bmal1
L-/-

 and Bmal1
f/f

 mice at CT4 and CT16. 

These time points were chosen since they often correspond to high and low nucleotide 

abundance in WT mice. We present the results of this analysis organised in a metabolic map, 

similar to that used in Fig. 1. 

IMP and UMP were little affected by the loss of the liver clock. While circadian time had a 

strongly significant effect on the abundance of both, only UMP showed a significant 

time/genotype interaction in two-way ANOVA. This is reminiscent of Ppat, Cad and Umps 

expression in Fig. 1: while they were affected by the loss of the hepatic clock, a rhythmic 

expression persisted, suggesting systemic control of de novo nucleotide synthesis by rhythmic 

cues.  

AMP significantly increased in Bmal1
L-/-

 liver but ATP remained low, which is consistent with 

the blunted expression pattern of Ak2 and Ak4, resulting in a lower ADP/AMP ratio. The 

opposite branch of the purine pathway appeared similarly but somewhat less affected. GTP 

showed blunted CT4/CT16 fold ratio (genotype/time interaction significantly different in two 

way ANOVA, p<0.05). Together this is consistent with a primary circadian regulation of ATP 

synthesis that in turn drives changes in GTP via allosteric control.  
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For pyrimidines, UTP and UDP were significantly lower in Bmal1
L-/-

 liver, despite showing 

non-significant circadian variations in WT mice. CTP and CMP levels at CT4 were similar 

between genotypes, but at CT16 they increased in Bmal1
L-/-

 liver while they decreased in WT, 

suggesting altered phase of synthesis, with higher basal synthesis level in clock-less liver. 

The purine nucleosides adenosine and guanosine were less abundant in Bmal1
L-/-

 liver, but 

showed CT4/CT16 variations as in WT. Adenine base however showed a reduction in the 

CT4/CT16 fold ratio. Low adenosine and blunted adenine rhythm are consistent with higher 

expression levels but lower amplitude rhythm observed for Pnp in Fig. 1. For pyrimidine 

nucleosides, uridine showed increased levels in Bmal1
L-/-

 liver, but cytidine was not affected. 

Interestingly, the degradation product of purine nucleotides, uric acid, whose excess in human 

leads to gout, was elevated in Bmal1
L-/-

 liver, suggesting indeed that the balance between 

synthesis (low ATP levels) and degradation (high urate) of purines is tilted towards degradation. 

Together these data provide direct evidence that the hepatic circadian clock orchestrates the 

entire nucleotide metabolic pathway, in synchrony with systemic cues. 

Discussion 

Nucleotide metabolism within the liver is orchestrated by the hepatic circadian clock but also 

synchronised at the level of the whole organism. Firstly, de novo synthesis appears to respond 

mostly to systemic signals, which is consistent with the restricted feeding/fasting-driven 

rhythmic expression of Ppat, Umps and Cad in clock-deficient animal reported in a previous 

dataset (Vollmers et al., 2009). Secondly, the degradation of all nucleosides to their respective 

free bases appears regulated by the hepatic clock via control of phosphorylases transcription, but 

the rhythmic abundance of nucleosides likely reflects their absorption from food. Indeed, all 

nucleoside variations between CT4 and CT16 show parallel changes in WT and clock-deficient 

liver. Taken together, systemic and local circadian regulation of nucleotide metabolism will 
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regulate the amount of free bases and/or nucleosides released into the circulation for salvage, 

while ensuring an appropriately timed flow of newly synthesised nucleotides into the hepatic 

pool. This is especially obvious for purines, since all rhythmic genes involved in the anabolism 

of purines (Ppat, Ak2, Ak4 and Rrm2) show synchronized expression with a peak around CT12, 

in contrast to Pnp peaking at CT20.  

The influence of the hepatic clock is mostly seen in the phosphorylation of nucleotides. All 

nucleotide triphosphates synthesised from their monophosphate forms (ATP, GTP, UTP) show 

lower abundance and/or amplitude in clock-less liver. The blunted Ak2 and Ak4 expression in 

Bmal1
L-/-

 liver is consistent with these observations for ATP and GTP. UTP was not rhythmic in 

WT but its decreased abundance in Bmal1
L-/-

 liver clearly indicates nucleotide synthesis as a 

whole suffers from the loss of the hepatic clock. The same is true for opposite variations of 

cytidine nucleotides. 

The expression rhythms of mitochondrial kinases (Ak2, Ak4, Cmpk2 and Tk2) suggest that timed 

nucleotide conversion is especially important in mitochondria, perhaps because they rely 

exclusively on nucleotide salvage and have a more dynamic genome (Rotig and Poulton, 2009). 

Notably, AKs are critically important in the control of cellular energy homeostasis, by 

regulating the amount of ADP available for the synthesis of ATP (Noma, 2005), 70% of which 

originate from mitochondria. We propose that the constant low levels in Ak2 and Ak4 expression 

may contribute to decreased supply of ADP, in turn leading to low ATP levels, affecting in turn 

the synthesis of other nucleotides. Similarly, overexpression of both Ctps and Ctps2 in Bmal1
L-/-

 

liver is likely to contribute to lower UTP and higher CTP and CMP levels observed in these 

animals.  

Available data on the Arabidopsis circadian transcriptome (Mockler et al., 2007) reveals that 

plant homologues of Rrm2, Ak, Ppat and Cad show a circadian component in their expression. 

Interestingly, most of these homologues are targeted to chloroplasts or mitochondria, where the 
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de novo synthesis of nucleotides in plant is located (Zrenner et al., 2006). The evolutionary 

conserved circadian nucleotide synthesis, located in different subcellular compartments, 

essentially times maximal availability of nucleotides when they are required the most. As a 

concrete example in mammals, nucleotide excision repair activity in adult mouse liver and brain 

DNA is maximal at CT12 (Kang et al., 2009; Kang et al., 2010), when Rrm2 expression is 

highest, replenishing the pool of dNTPs. 

 

AMP-activated protein kinase (AMPK), whose activity is allosterically regulated by the 

AMP/ATP ratio, was found to regulate the circadian clock (Lamia et al., 2009). Interestingly, 

the AMP/ATP ratio will change during the day due to constant AMP levels but cyclic ATP 

abundance. The circadian clock thus regulates ATP levels, which may in turn feedback to adjust 

the clock in a complex interplay between metabolism and the clock, the topic of recent reviews 

(Asher and Schibler, 2011; Bass and Takahashi, 2010; Schmutz et al., 2011). The role of 

adenylate kinases, more precisely of Ak2, in the generation of circadian rhythms has even been 

suggested previously (Noma, 2005). To confirm the rhythmic expression of AK2, the variations 

of its protein in the liver are shown in Sup. fig. 4. 

 

An important question that has not been addressed in our study is whether the disruption of 

nucleotide rhythms and abundance leads to pathologies in Bmal1
L-/-

 animals. The increased uric 

acid observed in Bmal1
L-/-

 liver, despite its efficient degradation in mouse liver (as opposed to 

human in which UOX, the enzyme oxidising urate, is a pseudogene), may have pathological 

consequences under special circumstances. In addition, the regenerating liver, as well as 

peripheral tissues with high proliferative rates such as bone marrow or thymus, may be 

adversely affected due to nucleotide imbalances seen in the liver of Bmal1
L-/-

 animals. Further 

investigations will address these possibilities. 
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Conclusions. 

 

Hepatic nucleotide metabolism is timely orchestrated, from the transcriptional control of rate-

limiting genes to the rhythmic abundance of metabolites. The loss of the local hepatic circadian 

clock causes significant perturbations in the normal rhythms of nucleotides likely affecting the 

physiology of the whole animal. These results represent a novel integrative approach, linking 

transcriptomics with high-end metabolomics, focussing on the circadian control of a well 

characterised metabolic pathway. 
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Experimental Procedures 

Animals. All experiments were approved by the animal experimentation committee of Kyoto 

University. Liver specific Bmal1-deficient mice on a full C57BL/6J background (Bmal1
L-/-

) and 

Bmal1
f/f 

were generated as described (Shimba et al., 2011). Male C57BL/6J mice and Bmal1
L-/-

 

mice (8 weeks old) were maintained at 23 ± 1°C with 50 ± 10% relative humidity, three animals 

per cage on a 12 h light/12 h dark cycle (lights on 8:00, lights off 20:00), food and water ad 

libitum. At the end of the last dark phase, light was permanently switched off. On the second 

day in DD, starting from CT0 (CT0 beginning of the endogenous day, CT12 beginning of the 

endogenous night, 8:00 and 20:00 respectively), animals (n=3) were sacrificed every four hours 

under a safe red light and sampled for liver RNA extraction and metabolomics analysis. 

 

RNA extraction and quantitative real-time PCR. Mice were sacrificed by cervical 

dislocation and 50 mg from the left liver lobe were immediately transferred in 1ml Trizol 

(Invitrogen, Tokyo, Japan) and homogenised using TissueLyzer (Qiagen, Tokyo, Japan). 

Homogenates were processed for total RNA extraction (RNeasy, Qiagen), and final RNA 

samples were quantified by Nanodrop spectrophotometer. 1.5 g total RNA from each liver 

sample was reverse-transcribed using VILO (Invitrogen). Quantitative real-time PCR was 

performed on 20 ng cDNA using Platinum SYBR Green qPCR Supermix (Invitrogen) in 

StepOnePlus (Applied Biosystems, Tokyo, Japan). Absolute quantification standards for each 

target cDNA were obtained using band-purified PCR products as templates, synthesised using 

the same primer pairs used in qPCR and verified by sequencing (see primer list in supplemental 

table 1). All PCR products used for standard and quantification were of similar sizes (120-150 

bp) and molecular weight (40 KDa). Data were then normalised using relative expression of 

the housekeeping gene Tbp. 



Rhythmic nucleotide synthesis in the liver. 

 
 

14 
 

CE-TOFMS. At the time of liver sample collection for qPCR, another 50mg sample from the 

left liver lobe, adjacent to the fragment previously taken, was excised and immediately 

transferred to a 2 ml tube, then snap-frozen in liquid nitrogen. All samples were kept a few days 

at -80C until analysis. Samples were then sent for CE-TOFMS analysis to Human Metabolome 

Technologies (Tokyo, Japan). See supplemental materials for additional information. 

Statistical analyses. Gene expression and metabolites concentration in wild-type mice were 

analysed by One-way ANOVA. To compare Bmal1
L-/-

 and WT mice, gene expression profiles 

were tested by Two-way ANOVA. All statistical analyses were performed using Graphpad 

Prism 4.0. For hierarchical clustering analysis of liver metabolites, raw concentration data of 

circadian metabolites were normalised and mean centred, and then clustered by Pearson 

Correlation Coefficients (Eisen et al., 1998). This was performed using GenePattern available 

from The Broad Institute. 
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Figure Legends 

Fig. 1. Rate-limiting enzymes are under transcriptional control by the hepatic circadian 

clock. Gene expression analysis in C57BL/6J and Bmal1
L-/- 

mice, on the second day in constant 

darkness, starting from CT0 (n=3 mice per time points, sampled every 4 hours). One-way 

ANOVA was used to analyse gene expression profiles in WT mice, with significance levels 

given under the legend of each graph. Comparison of gene expression in the liver of C57BL/6J 

and Bmal1
L-/-

 mice was performed by Two-way ANOVA, the significance levels are given 

under the title of each graph in the following order:  interaction/genotype/time with * = p<0.05; 

** = p<0.01; *** = p<0.001. The empty and filled rectangles over the X axis indicate subjective 

day and night, respectively. For visual clarity, data at CT0 is double plotted at CT24 in all 

graphs. (A), Gene expression analysis of enzymes in the purine pathway. A simplified purine 

metabolic pathway is shown in the centre. Note the similar peak times for Ppat, Rrm2, Ak2 and 

Ak4, different from that of Pnp. (B), Gene expression analysis of enzymes in the pyrimidine 

pathway. A simplified pyrimidine metabolic pathway is shown in the centre. Green arrows 

indicate de novo synthesis (multiple enzymatic steps, but rate-limiting enzymes are indicated by 

a green label); blue, NMP kinases; red, NDP reductase; purple, nucleoside phosphorylases. 

Double black lines represent enzymatic activities encoded by non-rhythmic genes. All data 

presented are Mean +/- SEM. 

 

Fig. 2. Rhythmic abundance of free bases, nucleosides and nucleotides in the liver. 

Quantification of purine and pyrimidine nucleotides, nucleosides and free bases in the liver of 

C57BL/6J mice sampled on the second day in constant darkness from CT0 (n= 3 animals per 

time point). Significance levels in One-way ANOVA are given on the upper right corner of each 

graph. The empty and filled rectangles over the X axis indicate subjective day and night, 

respectively. Here, the colour of curves indicate initial nucleotide monophosphate from the de 
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novo pathway (green), NDP and NTP (blue) and free bases and nucleosides (purple), 

corresponding to the colours used for the enzyme activities contributing to the regulation of 

these metabolites. For visual clarity, data at CT0 is double plotted at CT24 in all graphs. All 

data presented are Mean +/- SEM. (A), Rhythmic profiles of purine nucleotides, nucleosides 

and free bases. (B), Rhythmic profiles of pyrimidine nucleotides, nucleosides and free bases. 

(C), Hierarchical clustering of purines using Pearson correlation coefficient displayed as a heat 

map. Note the clear clustering between nucleotides, nucleosides and free bases, forming three 

separated time-domains of maximal abundance. (D), Hierarchical clustering of pyrimidines 

using Pearson correlation coefficient displayed as a heat map. Note here the clear higher-order 

clustering between cytidine nucleotides, nucleoside and bases; and UMP, uridine and uracil. All 

data presented are Mean +/- SEM. 

 

Fig. 3. Loss of liver clock affects nucleotide rhythms and abundance. Absolute 

quantification of nucleotides, nucleosides and free bases in Bmal1
L-/-

 and Bmal1
f/f

 (WT) mice by 

CE-TOFMS at CT4 and CT16 (n=2). (A), Purine pathway. Note IMP rhythm persists in Bmal1
L-

/-
 liver while ATP remains low. (B), Pyrimidine pathway. Note opposite changes in UTP and 

CTP. Data were analysed by Two-way ANOVA. Significance levels in Two-way ANOVA are 

given under the title of each graph in the following order: interaction/genotype/time, with * = 

p<0.05; ** = p<0.01; *** = p<0.001. All data presented are Mean +/- SD. 
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Supplemental Information Inventory 

-A detailed explanation of the Capillary Electrophoresis Time-Of-Flight Mass-Spectrometry method 

employed. It is related to the data presented in Figure 2. 

-A description of Western Blot method employed for the data of Supplemental Figure 4, which 

supports the data presented in Figure 1. 

-Supplemental Figures: 

- Supplemental Figure 1. Bmal1L-/- mice have disrupted circadian clock in the liver, related to 

Figure 1. Confirms the disruption of liver Bmal1 expression. 

- Supplemental Figure 2. Genes involved in the synthesis and supply of nucleotides are 

strongly expressed in the liver, related to Figure 1. Shows liver-specific expression of genes 

involved in nucleotide metabolism, supporting Figure 1-associated discussion. 

- Supplemental Figure 3. Mean abundance of purine and pyrimidine in the liver, related to 

Figure 2. Shows mean abundance of nucleotides in the liver, supporting Figure 2. 

- Supplemental Figure 4. Variations in AK2 protein quantity in the WT liver across a day in 

constant darkness, related to Figure 1. Shows Ak2 expression in the liver of WT mice, 

supporting Figure 1. 

-Supplemental Table 1: shows the sequence of primers used for real-time PCR data presented in 

Figure 1.  

-Supplemental References: related to the references cited in the extended methods pertaining to 

the CE-TOFMS. 
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Extended experimental procedures 

CE-TOFMS. Frozen liver samples were homogenized (MS-100R; TOMY, Tokyo, Japan) in 500 ml of 

methanol. The homogenate was mixed with chloroform and Milli-Q water, and then centrifuged at 2,300 

g for 5 min at 4℃. Subsequently, the aqueous phase was centrifuged at 9,100 g for 120 min at 4℃ for 

ultra-filtration through a 5 KDa filter (Millipore, Tokyo, Japan) to remove proteins. The filtrate was 

evaporated and dissolved in 50 µL of Milli-Q water for CE-TOFMS analysis. CE-TOFMS was carried 

out using an Agilent CE Capillary Electrophoresis System equipped with an Agilent 6210 Time of Flight 

mass spectrometer, Agilent 1100 isocratic HPLC pump, Agilent G1603A CE-MS adapter kit, and Agilent 

G1607A CE-ESI-MS sprayer kit (Agilent Technologies,Waldbronn, Germany). Metabolite peaks were 

compared to a reference standards database held in Human Metabolome Technologies. 

The system was controlled by Agilent G2201AA ChemStation software version B.03.01 for CE (Agilent 

Technologies, Waldbronn, Germany). Cationic metabolites were analyzed with a fused silica capillary 

(50 μm i.d. × 80 cm total length), with Cation Buffer Solution (Human Metabolome Technologies) as the 

electrolyte and methionine sulfone as internal standard. The sample was injected at a pressure of 50 mbar 

for 10 sec (approximately 10 nl). The applied voltage was set at 27 kV. Electrospray ionization-mass 

spectrometry (ESI-MS) was conducted in the positive ion mode, and the capillary voltage was set at 

4,000 V. The spectrometer was scanned from m/z 50 to 1,000. Other conditions were as in the cation 

analysis (Soga and Heiger, 2000). 

Anionic metabolites were analyzed with a fused silica capillary (50 μm i.d. × 80 cm total length), with 

Anion Buffer Solution (Human Metabolome Technologies) as the electrolyte and PIPES as internal 

standard. The sample was injected at a pressure of 50 mbar for 25 sec (approximately 25 nl). The applied 

voltage was set at 30 kV. ESI-MS was conducted in the negative ion mode, and the capillary voltage was 

set at 3,500 V. The spectrometer was scanned from m/z 50 to 1,000. Other conditions were as in the anion 

analysis (Soga et al., 2007). Raw data obtained by CE-TOFMS were processed with the automatic 
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integration software MasterHands (Sugimoto et al., 2010). Peak information including m/z, migration 

time (MT) and area was obtained. Peak area was converted into relative peak area according to the 

equation: Relative peak area=Metabolite Peak Area/(Internal Standard Peak Area × Sample Amount). 

Each peak was aligned according to similar migration time on CE and m/z value determined by TOFMS. 

Near 100 metabolites were identified using this procedure. 

Western Blot. Equivalent amounts of liver tissue (~50 mg) were dissected (n=2 animals per time points 

at CT 0, 4, 8, 12, 16 and 20) and homogenised in 0.5 ml RIPA buffer with a Dounce homogeniser. 

Homogenates were transferred to a 1.5 ml microtube and incubated at 4°C for 20 min, then centrifuged at 

12,000 xg at 4°C for 15 min. The supernatant was aliquoted into new tubes. Protein homogenates were 

mixed with 5x Laemmli buffer, boiled at 95°C for 10 min, centrifuged for 5 min at 12,000 xg, then 

equivalent amounts of proteins (~ 10 g in 15 l) were loaded into each well. Samples were then run on a 

standard Polyacrylamide gel (ATTO pre-cast gel, 12.5%) at 25 mA for 20 min, then at 35 mA for 40 min 

in SDS TRIS-glycine buffer. Samples were then semi-dry blotted onto a PVDF membrane (ATTO, Japan) 

following manufacturer’s protocol. Membrane was blocked with Blocking One (Nacalai Tesque, Japan) 

for 30 min at RT, then simultaneously incubated with anti-AK2 (ProteinTech, 11014-1-AP, x2000) and 

anti--actin (Sigma, A3853, x1000) secondary antibodies overnight at 4°C in TBST. The next day 

membrane was washed three times 5 min in TBST, then incubated in HRP-conjugated secondary 

antibodies (anti-mouse IgG, NA9310, x 50,000; anti-rabbit IgG, NA9340, x50,000) for 1 hour at RT in 

TBST. The membrane was washed three times 5 min at RT in TBST. Bands were visualised using ECL 

prime chemiluminescent reagent (GE Healthcare) following manufacturer’s instructions in a Fujifilm Las-

4000 imager (Fuji, Japan). 

 

 

 



Supplemental Figure 1. Bmal1
L-/-

 mice have disrupted circadian clock in the liver, related to Figure 

1. Clock gene expression analysis in the liver of WT and Bmal1
L-/-

 mice kept in constant darkness. Real-

time PCR with a primer pair targeted to the deleted Bmal1 region (exon 6 to 8) did not lead to any 

significant amplification; the circadian clock in the liver has efficiently been disrupted. This is confirmed 

with the expression of the canonical clock genes Per1 and Per2 in the liver of the same animals, showing 

severely blunted expression. All data are mean +/- SEM, n = 3. The frame on top of each graph indicate 

significance level of gene expression in wild-type animals in one-way ANOVA (top), followed 

underneath by the comparison of gene expression between WT and Bmal1
L-/-

 animals by Two-way 

ANOVA (Interaction/Time/Genotype). 

 

Supplemental Figure 2. Genes involved in the synthesis and supply of nucleotides are strongly 

expressed in the liver, related to Figure 1. (A), The liver is the main supplier of nucleoside and bases to 

other tissues throughout the body. In agreement to that, expression of Pnp, Upp2 and Tymp, encoding 

nucleoside phosphorylases, is dramatically higher in the liver compared to the adrenal gland or to muscle 

tissue. (B), Rrm2 expression is rhythmic and in limiting amount compared to the Rrm1 subunit (left), 

consistent with RRM2 as the rate-limiting subunit of the whole RRM enzyme. Upp2 expression in the 

liver is 100-fold higher than that of Upp1 (right), indicating that Upp2 encodes the main uridine 

phosphorylase activity detected from the liver.  

 

Supplemental Figure 3. Mean abundance of purine and pyrimidine in the liver, related to Figure 2. 

(A), Mean abundance of purine bases, nucleosides and nucleotides. (B), Mean abundance of pyrimidine 

bases, nucleosides and nucleotides. 

 



Supplemental Figure 4. Variations in AK2 protein quantity in the WT liver across a day in constant 

darkness, related to Figure 1. AK2 (lower bands at 26 KDa) and -Actin (upper bands at 42 KDa) 

proteins were visualised on the same membrane using different primary and secondary antibodies. n = 2 

animals per time point, their corresponding sample loaded sequentially in two CT0-20 series. Note the 

higher intensity of bands at CT12-20. 

Supplemental Table 1 

Sequence of primers used for quantitative real-time PCR 

Target 
gene  

Sense primer (5'-3') Antisense primer (5'-3') 

Ak2 GGAGGATCACTGGGAGGCTGAT CGTTGTCATCTGACCTGCGGA 

Ak4 GGGAGGGTCTATAACCTGGAC TCCTTGTACCGTCTTAGCCTG 

Bmal1 AGGCGTCGGGACAAAATGAACA TGGGTTGGTGGCACCTCTCA 

Cad AGAAAGGGACAGAGCCGTCAG ATCCAGAGCACAGATCCGAGG 

Cmpk2 CTGCTTAACTCTGCGGTGTTC CTTTCTGGACCTCCTTTGGGC 

Ctps GGAAGACTGTCCAGGTTGTCCC AATGTCTCCCACTGTGCCACC 

Ctps2 AGCCAGTCACCAAAGCCGAGGA CCTTGCCCACGAAATTGCCTG 

Dpyd CCACCGCAGCCAAGAAACTAG TCGCTCACCAAGAGTCGTGTG 

Per1 TGGCTCAAGTGGCAATGAGTC GGCTCGAGCTGACTGTTCACT 

Per2 CCATCCACAAGAAGATCCTAC GCTCCACGGGTTGATGAAGC 

Pnp TTAGGAGGGCTGACTGCTCAC GCATCATCACACAGGATCTGC 

Ppat GGGTATTGGGCTTTCCACGTC TAACCAGGGAGTATGCTGCGG 

Rrm1 CACCCTGACTATGCCATCCTGG GAGAGTGTCTGCCGTTGTGCG 

Rrm2 CTGTTTCTATGGCTTCCAAAT TTCTTCTTCACACAAGGCATT 

Tk1 CGGAGAGTGTGGTGAAGCTCA CACGGAGTGATACTTGTCGGC 

Tk2 TCCAAGACCCCATCACTCTCTC TGACTTCTTCATGCTCGTGGTC 

Tymp AGGTCCCTTCACCCTTCGCTGA CCTAGAGCCAGTAGCATCGTG 

Umps GGCGACAGTTATCTGCTCAGC CGTCCTCAATGACCAGACAGG 

Upp1 CCTCAGCACTAGCACACACGA GGATATTCCTTCCCTGGATGG 

Upp2 CGGTTGGAGGGAGATGGAGAA AATGGAAATGGAGGGGATGCC 

Supplemental table 1 Sequences of oligonucleotide primers used in qPCR in Figure 1. 
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