56 research outputs found

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    Get PDF
    大洋の東西で異なるマイワシの環境応答 --耳石が示すグローバル生存戦略の鍵--. 京都大学プレスリリース. 2022-10-17.Massive populations of sardines inhabit both the western and eastern boundaries of the world’s subtropical ocean basins, supporting both commercial fisheries and populations of marine predators. Sardine populations in western and eastern boundary current systems have responded oppositely to decadal scale anomalies in ocean temperature, but the mechanism for differing variability has remained unclear. Here, based on otolith microstructure and high-resolution stable isotope analyses, we show that habitat temperature, early life growth rates, energy expenditure, metabolically optimal temperature, and, most importantly, the relationship between growth rate and temperature are remarkably different between the two subpopulations in the western and eastern North Pacific. Varying metabolic responses to environmental changes partly explain the contrasting growth responses. Consistent differences in the life-history traits are observed between subpopulations in the western and eastern boundary current systems around South Africa. These growth and survival characteristics can facilitate the contrasting responses of sardine populations to climate change

    Distribution and Cconnection to other Plant-Communities of Genista radiata (L.) Scop in the South Tyrol (Italy)

    Get PDF
    Es werden die Genista radiata-Bestände an der Mendel in Südtirol (Italien) beschrieben und ihr Gesellschaftsanschluß diskutiert. Das Genisto-Festucetum alpestris Peer 83 besidelt steile südexponierte Kalkhänge der hochmontanen und subalpinen Stufe und ersetzt z.T. den Zwergstrauchgürtel mit Pinus mugo. Ähnlich zusammengesetzt ist das Genisto-Festucetum alpestris pinetosum Peer 83, das in den ¡lockeren Erika-Kiefernwäldern auftritt und bis in die tiefmontane Stufe hinunterreicht. Keinerlei syntaxonomische Bedeutung besitzt Genista radiata in den thermophilen Buschwaldgesellschaften, in denen die Pflanze lediglich eine Variante zum Orno-Ostryetum seslerietosum Peer 81 darstellt und speziell in der Saumzone anzutreffen ist. Auch in den Lärchenwiesen der Kammlagen kommt Genista radiata nur sporadisch vor. Sie ist hier mit dem Festucetum nigrescentis laricetosum subass. prov. verzahnt.Istražene su vegetacijske sastojine vrste Genista radiata u južnom Tirolu i razmatrana njihova fitocenološka pripadnost. Asocijacija Genisto-Festucetum alpestris Peer 83 nastava strme, južne vapnenačke obronke visokobrdskog i subalpskog pojasa. Subasocijacija Genisto-Festucetum alpestris pinetosum Peer 83 dolazi u rijetkim borovim šumama s crnjušom i spušta se do u niži brdski pojas. Termofilne niske šume, u kojima Genista radiata nema posebno sintaksonomsko značenje, označene su samo kao varijanta zajednice Orno-Ostryetum seslerietosum Peer 81. Genista radiata dolazi također na travnjacima s arišem, ali samo sporadično i to u mješavini sa zajednicom Festucetum nigrescentis laricetosnm subass. prov.The Genista radiata-communities of the Mendel in the South Tyrol (Italy) are described and their connection to other plant-communities is discussed. Genisto-Festucetum alpestris Peer 83 settles on steep, south- exposed colcareous slopes of high-mountain and subalpine altitudes and replaces particularly the dwarf-shrub-belt with Firms mugo. Similar contents aire found in Genisto-F estucetum alpestris pinetasum Peer 83, which occurs in undensed Erico-Pinetum-communities and reaches down to the low-mountain-altitude. In the thermophilic bush-communities, in which Genista radiata is found only as a variant of Orneto-Ostryetum seslerie- tosum (Peer 81), the plant has no syntaxonomic importance. Genista radiata especially is found in the edge-zone. In the grassland of the larch- communities of the ridges Genista radiata appears only sporadically. Here the plant appeals in Festucetum nigrescentis laricetosum subass. prov

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    R/V SHINSEI MARU Cruise Report KS-22-9

    No full text
    調査海域: 東シナ海黒潮周辺海域 / Area: Kuroshio region in the East China Sea ; 期間: 2022年7月3日~2022年7月12日 / Operation Period: July 3, 2022~July 12, 202

    R/V SHINSEI MARU Cruise Report KS-21-11

    No full text
    調査海域: 熊野灘沖~四国沖黒潮周辺海域 / Area: Kuroshio region off Shikoku to Kumanonada Sea ; 期間: 2021年6月14日~2021年6月23日 / Operation Period: June 14, 2021~June 23, 2021http://www.godac.jamstec.go.jp/darwin/cruise/shinsei_maru/ks-21-11/

    Real-time monitoring of wind and wave in Otsuchi Bay, Tohoku, Japan

    No full text
    A monitoring of wind and surface wave was started at October 2012 using a mooring buoy with a ultrasonic anemometer and a GPS wave sensor in Otsuchi Bay, Iwate, Japan. Horizontal wind velocity is observed hourly for 600 s in 0.5 s interval, and height, period and direction of surface waves are estimated hourly from three dimensional displacement of the buoy for 1200 s in 0.4 s interval. Statistic data such as mean wind speed and direction, significant wave height, period and direction are distributed hourly in real-time via internet with a chart of time series, and they are utilized for decision of going fishing by fishermen around the Bay. Analysis in the period of the first three months revealed that waves in Otsuchi Bay were predominantly affected by swells propagated from northeastern offshore region and that the significant wave height is significantly correlated with wind velocity toward Otsuchi Bay in the northeastern offshore region faced on the Bay mouth

    Elevated turbulent and double-diffusive nutrient flux in the Kuroshio over the Izu Ridge and in the Kuroshio Extension

    No full text
    While the Kuroshio is known to be a nutrient stream, as these nutrients are in dark subsurface layers, they are not immediately available for photosynthesis unless they are supplied to the sunlit surface layers. Recent microstructure observations have revealed that strong diapycnal mixing caused by the Kuroshio flowing over topographic features and double diffusion in the subsurface layers of the Kuroshio. However, it is still unclear how much nutrient flux can be provided by these microscale mixing processes. In this study, using an autonomous microstructure float and nutrient samplings, nutrient flux caused by the Kuroshio over the Izu Ridge, and that caused by double diffusion in the Kuroshio Extension are quantified. The nitrate diffusive flux is estimated to be >1mmolNm−2day−1 over a distance, 20–30 km near the Izu Ridge and >0.1mmolNm−2day−1, which persists further downstream direction over 100 km along the Kuroshio, increasing the subsurface chlorophyll-a concentration in the region 200 km downstream. The double-diffusion-induced nitrate flux is estimated to be 1-10mmolNm−2day−1 in the pycnostad 26–26.5kgm−3 of the Kuroshio Extension, suggesting that whether this double-diffusion-induced nutrient flux in the subsurface layers can ultimately contribute to surface primary production depends on additional eddy up- and northward fluxes
    corecore