63 research outputs found

    K-Rational D-Brane Crystals

    Full text link
    In this paper the problem of constructing spacetime from string theory is addressed in the context of D-brane physics. It is suggested that the knowledge of discrete configurations of D-branes is sufficient to reconstruct the motivic building blocks of certain Calabi-Yau varieties. The collections of D-branes involved have algebraic base points, leading to the notion of K-arithmetic D-crystals for algebraic number fields K. This idea can be tested for D0-branes in the framework of toroidal compactifications via the conjectures of Birch and Swinnerton-Dyer. For the special class of D0-crystals of Heegner type these conjectures can be interpreted as formulae that relate the canonical Neron-Tate height of the base points of the D-crystals to special values of the motivic L-function at the central point. In simple cases the knowledge of the D-crystals of Heegner type suffices to uniquely determine the geometry.Comment: 36 page

    Selmer Groups in Twist Families of Elliptic Curves

    Full text link
    The aim of this article is to give some numerical data related to the order of the Selmer groups in twist families of elliptic curves. To do this we assume the Birch and Swinnerton-Dyer conjecture is true and we use a celebrated theorem of Waldspurger to get a fast algorithm to compute % L_{E}(1). Having an extensive amount of data we compare the distribution of the order of the Selmer groups by functions of type α(loglog(X))1+εlog(X)\alpha \frac{(\log \log (X))^{1+\varepsilon}}{\log (X)} with ε\varepsilon small. We discuss how the "best choice" of α\alpha is depending on the conductor of the chosen elliptic curves and the congruence classes of twist factors.Comment: to appear in Quaestiones Mathematicae. 16 page

    On the Birch-Swinnerton-Dyer quotients modulo squares

    Full text link
    Let A be an abelian variety over a number field K. An identity between the L-functions L(A/K_i,s) for extensions K_i of K induces a conjectural relation between the Birch-Swinnerton-Dyer quotients. We prove these relations modulo finiteness of Sha, and give an analogous statement for Selmer groups. Based on this, we develop a method for determining the parity of various combinations of ranks of A over extensions of K. As one of the applications, we establish the parity conjecture for elliptic curves assuming finiteness of Sha[6^\infty] and some restrictions on the reduction at primes above 2 and 3: the parity of the Mordell-Weil rank of E/K agrees with the parity of the analytic rank, as determined by the root number. We also prove the p-parity conjecture for all elliptic curves over Q and all primes p: the parities of the p^\infty-Selmer rank and the analytic rank agree.Comment: 29 pages; minor changes; to appear in Annals of Mathematic

    Tamagawa defect of Euler systems

    Get PDF
    As remarked in [Kolyvagin systems, by Barry Mazur and Karl Rubin] Proposition 6.2.6 and Buyukboduk[ arXiv:0706.0377v1 ] Remark 3.25 one does not expect the Kolyvagin system obtained from an Euler system for a p-adic Galois representation T to be primitive (in the sense of [Kolyvagin systems, by Barry Mazur and Karl Rubin] Definition 4.5.5) if p divides a Tamagawa number at a prime \ell different from p; thus fails to compute the correct size of the relevant Selmer module. In this paper we obtain a lower bound for the size of the cokernel of the Euler system to Kolyvagin system map (see Theorem 3.2.4 of [Kolyvagin systems, by Barry Mazur and Karl Rubin] for a definition of this map) in terms of the Tamagawa numbers of T, refining [Kolyvagin systems, by Barry Mazur and Karl Rubin] Propostion 6.2.6. We show how this partially accounts for the missing Tamagawa factors in Kato's calculations with his Euler system.Comment: 20 page

    Effective equidistribution and the Sato-Tate law for families of elliptic curves

    Get PDF
    Extending recent work of others, we provide effective bounds on the family of all elliptic curves and one-parameter families of elliptic curves modulo p (for p prime tending to infinity) obeying the Sato-Tate Law. We present two methods of proof. Both use the framework of Murty-Sinha; the first involves only knowledge of the moments of the Fourier coefficients of the L-functions and combinatorics, and saves a logarithm, while the second requires a Sato-Tate law. Our purpose is to illustrate how the caliber of the result depends on the error terms of the inputs and what combinatorics must be done.Comment: Version 1.1, 24 pages: corrected the interpretation of Birch's moment calculations, added to the literature review of previous results

    Towards an 'average' version of the Birch and Swinnerton-Dyer Conjecture

    Get PDF
    The Birch and Swinnerton-Dyer conjecture states that the rank of the Mordell-Weil group of an elliptic curve E equals the order of vanishing at the central point of the associated L-function L(s,E). Previous investigations have focused on bounding how far we must go above the central point to be assured of finding a zero, bounding the rank of a fixed curve or on bounding the average rank in a family. Mestre showed the first zero occurs by O(1/loglog(N_E)), where N_E is the conductor of E, though we expect the correct scale to study the zeros near the central point is the significantly smaller 1/log(N_E). We significantly improve on Mestre's result by averaging over a one-parameter family of elliptic curves, obtaining non-trivial upper and lower bounds for the average number of normalized zeros in intervals on the order of 1/log(N_E) (which is the expected scale). Our results may be interpreted as providing further evidence in support of the Birch and Swinnerton-Dyer conjecture, as well as the Katz-Sarnak density conjecture from random matrix theory (as the number of zeros predicted by random matrix theory lies between our upper and lower bounds). These methods may be applied to additional families of L-functions.Comment: 20 pages, 2 figures, revised first draft (fixed some typos

    Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

    Get PDF
    Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker's method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker's method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.Comment: 20 pages. Some changes, the most important being on Conjecture 3.2, three references added ([Mas75], [MB90] and [Yu94]) and one reference updated [BS12]. Accepted in Bull. Brazil. Mat. So

    On the vanishing of Selmer groups for elliptic curves over ring class fields

    Full text link
    Let E be a rational elliptic curve of conductor N without complex multiplication and let K be an imaginary quadratic field of discriminant D prime to N. Assume that the number of primes dividing N and inert in K is odd, and let H be the ring class field of K of conductor c prime to ND with Galois group G over K. Fix a complex character \chi of G. Our main result is that if the special value of the \chi-twisted L-function of E/K is non-zero then the tensor product (with respect to \chi) of the p-Selmer group of E/H with W over Z[G] is 0 for all but finitely many primes p, where W is a suitable finite extension of Z_p containing the values of \chi. Our work extends results of Bertolini and Darmon to almost all non-ordinary primes p and also offers alternative proofs of a \chi-twisted version of the Birch and Swinnerton-Dyer conjecture for E over H (Bertolini and Darmon) and of the vanishing of the p-Selmer group of E/K for almost all p (Kolyvagin) in the case of analytic rank zero.Comment: 31 pages, minor modifications; final version, to appear in Journal of Number Theor

    Period polynomials, derivatives of L-functions, and zeros of polynomials

    Get PDF
    Period polynomials have long been fruitful tools for the study of values of L-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways to incorporate non-cuspidal modular forms and values of derivatives of L-functions into the same framework. We further review investigations of the location of zeros of the period polynomial as well as of its analogue for L-derivatives

    Mordell-Weyl and Shapharevich-Tate Groups for Elliptic Weyl Curves

    No full text
    Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    corecore