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Abstract
Period polynomials have long been fruitful tools for the study of values of L-functions

in the context of major outstanding conjectures. In this paper, we survey some facets of
this study from the perspective of Eichler cohomology. We discuss ways to incorporate
non-cuspidal modular forms and values of derivatives of L-functions into the same frame-
work. We further review investigations of the location of zeros of the period polynomial
as well as of its analogue for L-derivatives.

1 Introduction
The period polynomial provides a way of encoding critical values of L-functions associated to
modular cusp forms that has proven very successful in the uncovering of important arithmetic
properties of L-values. As such, its structure and properties as an object in its own right have
attracted a lot of interest from various perspectives, one of the most important ones being that
of Zagier, as will become apparent below. To give an idea of the uses of the period polynomial
and its structure, we start by outlining its definition.

Let f be an element of the space Sk of weight k cusp forms for SL2(Z). The period
polynomial of f is the polynomial in X is given by

rf (X) :=

∫ ∞
0

f(τ)(τ −X)k−2dτ.

A relation with the L-function of f is provided by the identity (cf eg. [37])

rf (X) =
k−2∑
n=0

(
k − 2

n

)
in−1Λf (n+ 1)Xn, (1.1)
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where Λf (s) := (2π)−sΓ(s)Lf (s) is the “completed” L-function of f.
An example of the manner by which the structure of the period polynomial leads to

important arithmetic information about values of L-functions is Manin’s Periods Theorem.
The algebraic properties of rf (cocycle relations) combined with the arithmetic nature of f
(as a Hecke eigenform) lead to a certain 1-dimensionality statement for rf , which, with (1.1)
translates to the following proportionality relation.

Theorem 1.1. Manin’s Periods Theorem ([29]). Let f be a normalized Hecke eigenform in
Sk with rational Fourier coefficients. Then there exist ω+(f), ω−(f) ∈ R such that

Λf (s)/ω+(f), Λf (w)/ω−(f) ∈ Q

for all s, w with 1 ≤ s, w ≤ k − 1 and s even, w odd.

Remark 1.2. For illustration purposes, here we gave a special case of the actual theorem
which will be discussed in slightly more detail in the next section. This special case was
essentially known earlier; see, for instance, §9 of [35]

Fundamental applications such as the above theorem have motivated closer independent
study of rf , for instance as a polynomial. The aspect we will be focusing on in this survey is
the location of the zeroes of rf (X).

The strength of techniques based on rf has likewise motivated the search for analogues
of the period polynomial in other situations. The example we will more closely be reviewing
here is an analogue of the period polynomial associated to derivatives of L-functions.

Derivatives of L-functions are the subject of some of the main current conjectures in
number theory, e.g. by Birch–Swinnerton-Dyer and by Beilinson. To review a part of the
latter, in an explicit formulation due to Kontsevich-Zagier [25], we recall the definition of
periods, again in the form given in [25]: These are complex numbers whose real and imaginary
parts have the form ∫

V

P (x)

Q(x)
dx,

where V is a domain in Rn defined by polynomial inequalities with coefficients in Q and
P,Q ∈ Q[X1, . . . , Xn]. The set P of periods contains π, log(n) (n ∈ N), etc. The arrangement
of the following special case of Beilinson’s conjecture follows [25].

Conjecture (Deligne-Beilinson-Scholl). Let f be a weight k Hecke eigencuspform for SL2(Z),
Lf (s) its L-function, and m an integer. Then, if r is the order of vanishing of Lf (s) at s = m,

L(r)(m) ∈ P [1/π].

Apart from the cases r = 0 (treated by Manin, Deligne, Beilinson, Deninger-Scholl; see [25]
and the references contained there) and r = 1 (thanks, in the case of weight 2, to Gross-Zagier
[19]), this conjecture is still open. Analogues of the period polynomial for first derivatives of
L-functions have been given in [18, 9]. The version we will be using is∫ ∞

0

f(w)(w − z)k−2

(
log(w)− πi

2

)
dw.
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The justification for this choice will come from cohomological considerations (see Section 3),
but, for the time being, we note that that this polynomial, in analogy with (1.1), equals

−
k−2∑
n=0

(
k − 2

n

)
i1−nΛ′f (n+ 1)zk−2−n.

This polynomial has an algebraic structure that fits into the same context as that of the
standard period polynomial. It was recently observed by the authors that, at least conjec-
turally, its zeros follow the same pattern as those of the standard period polynomial.

Conjecture 1.3. (“Riemann hypothesis for period polynomials attached to L-derivatives”) [13]
For any Hecke eigenform of weight k on SL2(Z), and for each m ∈ Z≥0, the polynomial

Qf (z) :=
k−2∑
n=0

(
k − 2

n

)
i1−nΛ

(m)
f (n+ 1)zk−2−n

has all its zeros on the unit circle. Moreover, its odd part

k−3∑
n=1
n odd

(
k − 2

n

)
i1−nΛ

(m)
f (n+ 1)zk−2−n

has all of its zeros on the unit circle, except for 0, ±a,±1/a for some a ∈ R.

In [13], this statement was proved in the case of Eisenstein series.
In this survey, we will review the theory of period polynomials and of the “period poly-

nomials” attached to L-derivatives from a cohomological perspective. We will further survey
conjectures and results about zeros of period polynomials and of their counterparts for L-
derivatives.

2 Period polynomials

2.1 Period polynomials of cusp forms

Set Γ :=PSL2(Z). This group is generated by S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ) (or, more precisely,
by their images under the natural projection of SL2(Z) onto Γ). The only relations are

S2 = (ST )3 = 1. (2.1)

For τ ∈ H, let f(τ) =
∑∞

n=1 ane
2πin be a cusp form of even weight k for Γ. A way to define

the period polynomial associated to f is as a polynomial in z of degree ≤ k − 2 given by

rf (z) :=

∫ ∞
0

f(τ)(τ − z)k−2dτ. (2.2)

3



The origin of this definition goes back (at least) to Poincaré (cf. [33]) in the context of work on
abelian integrals (a fact brought to our attention by [14]). Since then, the period polynomial
has been interpreted in several ways, each providing new insight and leading to important
applications. We will review two that are most relevant for our purposes.

a. Eichler cohomology
Firstly, Eichler [15] and Shimura [35] viewed them as periods of iterated integrals that are
now called Eichler integrals:

F (z) = (k − 2)!

∫ z

∞

∫ z1

∞
· · ·
∫ zk−2

∞
f(zk−1)dzk−1 . . . dz1 =

∫ z

∞
f(τ)(τ − z)k−2dτ. (2.3)

The relation of F with rf is given by

F (−1/z)zk−2 − F (z) = rf (z). (2.4)

This identity can be viewed as the starting point of an algebraic approach to the study of
the period polynomial which has far-reaching implications. It first implies that rf induces a
1-cocycle in Eichler cohomology, which we will now define. Since we will later need cocycles
in more general cases, we recall the general definition of cocycles.

LetM be a right Γ-module. For i ≥ 0, we call i-cochain for Γ with coefficients inM a map
from Γi to M. The group they form is denoted by Ci(Γ, n). The differential di : Ci(Γ,M) →
Ci+1(Γ,M) is given by

(diσ)(g1, . . . , gi+1) :=

σ(g2, . . . , gi+1).g1 +
i∑

j=1

(−1)jσ(g1, . . . , gj+1gj, . . . , gi+1) + (−1)i+1σ(g1, . . . , gi).
(2.5)

Set Zi(Γ,M) = ker(di) for the group of i-cocyles and, when i ≥ 1, Bi(Γ,M) = di−1(Ci−1(Γ,M))
for the group of i-coboundaries. We set B0 := 0. The group H i(Γ,M) := Zi(Γ,M)/Bi(Γ,M)
is the set of i-cohomology classes. For instance, a 1-cocycle φ is a map from Γ to M such that

φ(g2g1) = φ(g2).g1 + φ(g1) for all g1, g2 ∈ Γ. (2.6)

Both Zi and H i are endowed with a Hecke action which we will not define but mention because
it plays an important role in an application below. Detailed expositions can be found in [35, 8].

In Eichler cohomology, we apply this construction with M the space Pk−2 of polynomials
of degree ≤ k − 2. The action |2−k of Γ on Pk−2 or, more generally, on functions on H is:

(P |2−kγ)(z) := P (γz)j(γ, z)k−2, z ∈ H, γ ∈ Γ,

where j (( ∗ ∗c d ) , τ) := cτ + d. With this notation, (2.4) is re-written as

F |2−kS − F = rf . (2.7)
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We now consider the map σf : Γ→ Pk−2 defined by first setting σf (S) = rf and σf (T ) = 0 and
extending to Γ according to (2.6). This, in view of (2.1), gives a well-defined map because,
with (2.7),

σf (S
2) = σf (S)|2−kS + σf (S) = rf |2−kS + rf = F |2−k(S2 − S) + F |2−k(S − 1) = 0, (2.8)

and likewise σf ((ST )3) = 0.
Note that (2.7) does not mean that rf is a 1-coboundary in B1(Γ, Pk−2). It would only

mean that if F were in Pk−2. It is a coboundary in a larger space but, as we just saw,
this fact suffices to show that rf is 1-cocycle in Z1(Γ, Pk−2). This technique is used often in
constructions of cocycles and will reappear in the sequel.

It is possible to express the value of σf at every γ ∈ Γ by a simple formula:

σf (γ)(z) =

∫ ∞
γ−1∞

f(τ)(τ − z)k−2dz. (2.9)

A fundamental fact is that Eichler cohomology parametrizes modular forms by means of
the Eichler-Shimura isomorphism. For general f in the space Mk of all weight k modular
forms for SL2(Z), we define σf by

σf (γ)(z) :=

∫ τ0

γ−1τ0

f(τ)(τ − z)k−2dz,

where τ0 ∈ H is fixed. If ḡ is the function obtained by conjugating the values of g, we define
rf̄ by a similar formula involving integration of antiholomorphic differentials. Then, a version
of the Eichler-Shimura isomorphism can be stated as

Theorem 2.1. (Eichler-Shimura isomorphism) Let σ be the map assigning to (f, ḡ) ∈Mk⊕Sk
the 1-cocycle σf +σḡ and let π be the natural projection of Z1(Γ, Pk−2) onto H1(Γ, Pk−2). Then
π ◦ σ is a Hecke-equivariant isomorphism.

From this viewpoint, the period polynomial of a cusp form f can be redefined as the value
at the involution S of the image of f under the Eichler-Shimura map σ.

b. Critical values of L-functions A second interpretation of the period polynomial is
as a generating function of critical values of L-functions. As usual, we define the L-function
of a modular form f(z) =

∑∞
n=0 ane

2πinz by

Lf (s) :=
∞∑
n=1

an
ns

(for Re(s)� 0),

and the completed L-function by

Λf (s) := (2π)−sΓ(s)Lf (s).

The function Λf has a meromorphic continuation to the entire complex plane with possible
(simple) poles at 0 and k, and it satisfies the functional equation (see, e.g., [21], Chapt. 7):

Λf (s) = ikΛf (k − s). (2.10)
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It further has an integral expression:

Λf (s) =

∫ ∞
1

(f(iv)− a(0))vs−1dv + ik
∫ ∞

1

(f(iv)− a(0))vk−s−1dv − a(0)

s
− a(0)ik

k − s
. (2.11)

When f is a cusp form, Λf (s) is entire and (2.11) becomes the classical Mellin transform:

Λf (s) =

∫ ∞
0

f(iv)vs−1dv. (2.12)

The values of the L-functions of Hecke eigencuspforms are of fundamental importance,
among other reasons, because they are, at least conjecturally, closely connected with arith-
metic and classical arithmetic questions. For example, a part of the Birch–Swinnerton-Dyer
conjecture implies that, if Lf (1) 6= 0, for a weight 2 cusp form of a certain type, then a specific
polynomial Diophantine equation has at most finitely many solutions. This is part of the order
0 Birch–Swinnerton-Dyer conjecture and has been proven in [4], [19], and [26, 27].

Among the values of L-functions, the values at the integers within the critical strip 0 <
Re(s) < k are called critical and were the first ones to be studied. Using the binomial theorem
and (2.12), one can show that the period polynomial naturally encodes the critical L-values:

rf (z) = −i
k−2∑
j=0

(
k − 2

j

)
(iz)jΛf (j + 1). (2.13)

Remark 2.2. The cohomological properties of rf discussed in Part a. can be translated to
analogous statements here. Notably, if we rewrite the equations proving that σf is well-defined
(e.g. (2.8)) in terms of (2.13), we are led to Manin’s important “Eichler-Shimura relations”
(Prop. 2.1 of [29]). A crucial implication of these relations, discussed in the next application,
is that Z1(Γ, Pk−2) (more precisely, the part of this space corresponding to the odd part of
the polynomials in Pk−2) is defined by a linear system of equations with rational coefficients.

Application of a. and b. We will combine the above two interpretations of rf to illustrate
the power of the period polynomial with the following result.

Theorem 2.3. Manin’s Periods Theorem [29] Let f be a normalized Hecke eigencuspform
in Sk and let Kf be the field obtained by adjoining to Q the Fourier coefficients of f . There
exist ω+(f), ω−(f) ∈ R such that

Λf (s)/ω+(f), Λf (w)/ω−(f) ∈ Kf

for all s, w with 1 ≤ s, w ≤ k − 1 and s even, w odd.

Besides Manin’s proof in [29], other proofs stressing different aspects include those of
Shokurov ([34], geometric methods on Kuga-Sato varieties), Zagier ([38], using Rankin-Selberg
method and Rankin-Cohen brackets), Shimura ([36], by another variant of the Rankin-Selberg
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method), the first author and O’Sullivan ([12], by a variation of a method of [24] which uses
holomorphic projection and Cohen’s kernel) etc.

Sketch of proof of 2.3 The Hecke eigencuspform f generates a one-dimensional eigenspace
of Sk. By Theorem 2.1, this is mapped isomorphically to a one-dimensional eigenspace of
H1(Γ, Pk−2) and, in fact, the restriction of that map to just the even (resp. odd) powers of
the polynomial induces an isomorphism too. It can also be proved that this map sends f
to a one-dimensional eigenspace Af of the even (resp. odd) part of Z1(Γ, Pk−2) not just of
H1(Γ, Pk−2). By Remark 2.2, Z1(Γ, Pk−2) is defined over Q and thus Af is defined over Kf .
Since dim(Af ) = 1, this implies that there is a c ∈ C such that the even (resp. odd) part of
σf (S) = rf equals cP+ for an even polynomial P+ ∈ K[z] (resp. cP− for an odd polynomial
P− ∈ K[z]). With (2.13), this implies that quotients of critical L-values of the same parity
belong to Kf .

2.2 Period polynomials of non-cuspidal modular forms

The definition (2.2) no longer applies in the case that f is not cuspidal because the integral
may fail to converge at the end points. However, it is possible to modify the definitions so that
they include general modular forms as well. To our knowledge, the first one to give a general
definition and systematically study it was Zagier in [37]. (Grosswald [20], starting from a
different departure point, also worked with a similar object and proved a explicit expression
for it.) In the case of general f ∈Mk the “first definition” (2.2) was replaced by

r̃f (z) =

∫ ∞
i

(f(τ)− a0)(τ − z)k−2dτ +

∫ i

0

(f(τ)− a0τ
−k)(τ − z)k−2dτ

+
a0

k − 1

(
(z − i)k−1 +

(1 + iz)k−1

z

)
=

(∫ i

∞
(f(τ)− a0)(τ − z)k−2dτ +

a0

k − 1
(i− z)k−1

) ∣∣∣∣∣
2−k

(S − 1).

The “second definition” (2.13) was replaced by

r̃f (z) = −i
k−2∑
j=0

(
k − 2

j

)
(iz)jΛf (j + 1) +

a0

k − 1

(
zk−1 + z−1

)
. (2.14)

This extended definition is then used in [37] to state and prove an expression of a striking
generating function involving period polynomials over a basis of Mk as a quotient of products
of values of the classical Jacobi theta function.

A difference from the case of cusp forms is that r̃f is not in Pk−2 when f is not cuspidal.
Recently, it was shown in [3] that it is possible to define the period polynomial of Eisenstein
series so that it stays within Pk−2. Set

rf (z) =

(∫ z

∞
(f(w)− a0)(w − z)k−2dw + a0

∫ z

0

(w − z)k−2dw

) ∣∣∣∣∣
2−k

(S − 1). (2.15)
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This definition was made in a vastly general context by Brown in [3] which included general
iterated Shimura integrals and originated from an integral at a tangential base point at infinity.
In this more general setting it is proved that rf ∈ Pk−2 and that it induces a 1-cocycle.
Brown’s extension of the period polynomial was also motivated by important applications.
For example, he used it to express non-critical values in terms of multiple modular values.

A way to compare this definition with that of [37] is to consider the explicit form of the
Eichler cocycle it induces. Set

vf (z) :=

∫ z

∞
(f(w)− a0)(w − z)k−2dw +

a0

k − 1
zk−1.

Then, with the definition of d0 in (2.5) we define σf := d0vf . It is clear that rf = σf (S). On
the other hand, the associated cocycle of r̃f is given by σ̃f := d0ṽf , where

ṽf (z) :=

∫ i

∞
(f(w)− a0)(w − z)k−2dw +

a0

k − 1
(i− z)k−1

and where d0 is defined by the same formula as (2.5) but its domain is enlarged to C0(Γ,C(z)).
As mentioned above, in [3] it is proven in more general form that σf takes values in Pk−2.

This can also be seen by the identity shown in [13] (eq. (8)):

σf (γ) =

∫ i

γ−1i

f(w)(w − z)k−2dw

+

(∫ i

∞
(f(w)− a0)(w − z)k−2dw + a0

∫ i

0

(w − z)k−2dw

) ∣∣∣∣∣
2−k

(γ − 1).

(2.16)

From this it is also clear that σf is “canonical” in the sense that it belongs to the same
cohomology class as the image of f under the Eichler-Shimura isomorphism (Theorem 2.1).
With this definition of the cocycle rf we then have

rf (z) = −i
k−2∑
j=0

(
k − 2

j

)
(iz)jΛf (j + 1) (2.17)

(see the proof of Lemma 7.1 in [3]) Consider the case when f = Ek, the Eisenstein series

Ek(τ) = −Bk

2k
+
∞∑
n=1

σk−1(n)e2πinτ ,

where Ba is the a-th Bernoulli number. Then Lemma 7.1 of [3] shows that the above equation
takes the form

rEk(z) = −(k − 2)!

2

k/2−2∑
j=0

B2j+2

(2j + 2)!

Bk−2j−2

(k − 2j − 2)!
z2j+1 +

(k − 2)!

2

ζ(k − 1)

(2πi)k−1
(1− zk−2), (2.18)

and, by Proposition of pg. 453 of [37] (or (2.14)), we have

r̃Ek(z) = −(k − 2)!

2

k/2−1∑
j=−1

B2j+2

(2j + 2)!

Bk−2j−2

(k − 2j − 2)!
z2j+1 +

(k − 2)!

2

ζ(k − 1)

(2πi)k−1
(1− zk−2). (2.19)
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2.3 Zeros of period polynomials

Having argued the case for the conceptual importance of period polynomial and for its useful-
ness due to its structure, it becomes clear that it is of interest to examine it for its own sake,
as a polynomial. We review work on its zeros as a polynomial.

For k ∈ 2N, M. R. Murty, C. Smyth and R. Wang [30] studied the Ramanujan polynomial
k/2∑
j=0

B2j

(2j)!

Bk−2j

(k − 2j)!
z2j (2.20)

and proved the following result.

Theorem 2.4 (M. R. Murty, C. Smyth, R. Wang [30]). All non-real zeros of the Ramanujan
polynomial are on the unit circle.

With (2.19), the Ramanujan polynomial equals the odd part of −2zr̃Ek(z)/(k − 2)!.
Because of (2.8), the circle is a natural “line of symmetry” for the period polynomials, and

therefore results such this can be thought of as a “Riemann Hypothesis” for period polynomials.
This viewpoint was adopted in [31] where similar statements are connected to Manin’s theory
of “zeta polynomials” Zf (s). These are versions of the period polynomials that send the unit
circle to Re(s) = 1

2
and satisfy the functional equation Zf (1− s) = ±Zf (s).

In [28], Lalín and Smyth studied the zeroes of the “Ramanujan polynomials”

Rk(z) :=

k/2∑
j=0

B2j

(2j)!

Bk−2j

(k − 2j)!
z2j +

ζ(k − 1)

(2πi)k−1
(zk−1 − z).

Theorem 2.5 (Lalín and Smyth [28]). For each k ∈ 2N, the zeroes of Rk all lie on the unit
circle.

From a modular perspective, our interest in these polynomials is that, by (2.19) they are
the full −2zr̃Ek(z)/(k−2)!. In the sequel, we shall be concerned with analogues of Th. 2.4 for
derivatives of Eisenstein L-series. In particular, it will serve as the main motivation for our
first steps towards understanding our broader conjectures for entire modular forms spaces.

An interesting recent interpretation of the period polynomial of Eisenstein series and of
their zeros in view of Ramanujan’s “formula” for ζ(2m + 1) is discussed in [2]. In the same
paper a question is raised about a variation of the Ramanujan polynomial:

pm(z) =
ζ(2m+ 1)

2
(1− z2m)− (2πi)2m+1

2

m∑
n=1

B2n

(2n)!

B2m−2n+2

(2m− 2n+ 2)!
z2n−1. (2.21)

Note that pk/2−1(z) = (2πi)k−1rEk(z)/(k − 2)!. In Remark 7.4 of [2], it is asked whether pm
and p−m(z)/z (where p−m is the odd part of pm) are unimodular. In [13], we proved the second
part of this conjecture.

Analogous results have been proved for cusp forms. For example, Conrey, Farmer, and
Imamoḡlu [6] have proved that, apart from five “trivial” real zeroes, all zeroes of the odd part
of the period polynomial of a cusp form lie on the unit circle.
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Theorem 2.6 (Conrey, Farmer, and Imamoḡlu). If f is a cuspidal Hecke eigenform on
SL2(Z), then the odd part of rf has zeroes at 0,±1

2
,±2. The remainder of the zeros lie on the

unit circle.

A similar picture exists for the full period polynomials rf for Hecke eigencuspforms f .
However, in this case, there are no trivial zeros, and all zeros of rf lie on the unit circle. This
is summarized in the following result, shown by El-Guindy and Raji in [16] for level 1 and for
general level N by Jin, Ma, Ono, and Soundararajan in [22].

Theorem 2.7 (El-Guindy and Raji and Jin, Ma, Ono, and Soundararajan). If f is a Hecke
eigencuspforms on Γ0(N) for any N , then all zeroes of the period polynomial rf lie on the unit
circle.

Remark 2.8. Explicit approximations for the exact locations of the zeroes were given in [22].

The proofs of the above results are based on the origin of the period polynomial as a
cocycle. In particular, the behaviour of rf under the action of the involution S imposes a
special structure on the polynomial (it is a self-inversive polynomial). This allows for a more
convenient investigation of the location of the zeros thanks to the following result.

Lemma 2.9. [Theorem 2.2 of [16]] If h(z) is a polynomial of degree n with all zeros inside
the unit disk |z| ≤ 1, then for any d ≥ n and λ on the unit circle, the polynomial

zd−nh(z) + λznh(1/z) (2.22)

has all its zeroes on the unit circle, provided that it is not identically zero.

Statements of this type have a long history which can be traced back to Hermite (see the
Addendum of [28] for an account) but, in this form, the proposition has been proved in [16].

In this way, the problem of locating the zeros of rf is reduced to locating the zeros of
the polynomial h associated to rf through Lemma 2.9. This is achieved by bounds and
monotonicity statements for values of L-functions appearing in the coefficients of h. The
results cited above are proved by using different such bounds and monotonicity statements.

3 “Period polynomial” for derivatives of L-functions
Beilinson’s conjecture, part of which is stated in Conj. 1, pertains to values of derivatives of
L-functions and, as mentioned in the introduction, very little is known about the case of order
greater than 0. This has motivated many approaches to the study of values of derivatives.
We will outline one, due to Goldfeld and the first author (see [18, 8, 9] and the later works
by them and their collaborators: [10, 1, 11]) that incorporates these values into the Eichler
cohomology setting. In the cited papers, only the cuspidal case was studied but here we will
describe the general case as that was described in [13].
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3.1 First derivatives

We first recall the Dedekind eta function

η(τ) := e
2πiτ
24

∞∏
n=0

(1− e2πinτ )

and then set u(τ) := 2 log(η(τ)). For each γ ∈ Γ, this function satisfies

u(γτ) = u(τ) + log(j(γ, τ)) + cγ (3.1)

for some cγ ∈ C. In particular, cS = −πi
2
.

Let, as before, f be a modular form of weight k for SL2(Z). With the definition (2.5) we
set σf := d1vf where

vf (γ) :=

∫ z

∞
(f(w)− a0)(w − z)k−2 (u(γw)− u(w)) dw

+ a0

∫ z

i

(w − z)k−2 (u(γw)− u(w)) dw.

It can be proved that, although vf is a cochain that takes values in the space O of holomorphic
functions on the upper-half plane, σf takes values in the much smaller space of polynomials
of degree ≤ k − 2. Since, further, it is in the image of the differential map d1 , we deduce:

Lemma 3.1. (Lemma 3.3 of [13])The map σf is a a 2-cocycle in Pk−2.

As mentioned above, this construction extends the corresponding one or cusp forms given
in [9]. This is the content of the following proposition which, further, expresses σf in a way
which makes the analogy with the standard polynomial (2.9) more transparent.

Proposition 3.2. Let f be a cusp form of weight k for Γ. Then

σf (γ1, γ2) =

∫ ∞
γ−1
1 ∞

f(w)(w − z)k−2(u(γ2w)− u(w))dw

=

∫ γ1∞

∞
f(w)(w − z)k−2(u(γ2w)− u(w))dw

∣∣∣
2−k

γ1.

The connection with values of derivatives of L-functions is given by

Proposition 3.3. (Prop. 3.5 of [13]) Set

P (z) =
k−2∑
n=0

(
k − 2

n

)
i1−n

(n+ 1)2
zk−2−n.

Then

σf (S, S) = −
k−2∑
n=0

(
k − 2

n

)
i1−nΛ′f (n+ 1)zk−2−n + a(0)(P |2−k(1 + S))(z).

The proposition is stated in general, but, for cuspidal f , the analogy to (2.17) is obvious.
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3.2 Zeros of “period polynomials” for L-derivatives

In light of the analogy with the standard period polynomial, it is natural to ask whether
similar patterns in the distribution of zeros occur in “period polynomials” for derivatives of
L-functions. Inspired by the behavior exhibited by ordinary period polynomials as described
in Theorems 2.6 and 2.7, the authors searched for similar properties for polynomials built from
L-derivatives in [13]. There, the analogous period polynomials were defined to be polynomials

Qf (z) :=
k−2∑
n=0

(
k − 2

n

)
i1−nΛ′f (n+ 1)zk−2−n,

in direct analogy with (1.1) and the following conjecture was formulated.

Conjecture 3.4. For any Hecke eigenform of weight k on SL2(Z) the polynomial Qf (z) has
all its zeros on the unit circle. Moreover, the odd part of Qf (z) has all of its zeros on the unit
circle, except for trivial zeros at 0 and ±a,±1/a for some real number a.

The evidence for this conjecture was both theoretical and experimental. The former was
provided by our proof of the second part of Conj. 3.4 in the case of Eisenstein series. This is,
at the same time, the analogue of the main result of [30] on period polynomials of Eisenstein
series.

Theorem 3.5. ([13]) If 4|k, all non-zero zeroes of the odd part of QEk lie on the unit circle.

As in the case of the standard period polynomial, the pivot of the proof is the cohomological
origin of the “period polynomial” QEk which allows us to study it as a self-inversive polynomial.
On the other hand, we were then able to use more general theorems about locations of zeros
(Eneström-Kakeya Theorem [17, 23]). This is because our construction parallels Brown’s
version of the period polynomial of Eisenstein series (rEk) and not that of [37] (r̃Ek) which,
with its two extra terms, takes us away from the coefficient module of polynomials.

At first glance, since in Theorem 2.4 there are further real roots (in addition to 0), the
conclusion of Theorem 3.5 appears to not be analogous with its counterpart Theorem 2.4. The
reason for this is that, whereas the subject of Theorem 2.4 is Zagier’s version of the period
polynomial of Eisenstein series, the subject of Theorem 3.5 is a polynomial which extends
Brown’s version of the period polynomial of Eisenstein series. The analogue of Theorem 2.4
for Brown’s version of the period polynomial of Eisenstein series was stated as a question in
[2] and has the same conclusion as Theorem 3.5 (as shown in [13]).
Question: Are all non-zero zeroes of the odd part of

pk/2−1(z) =
(2πi)k−1

(k − 2)!
rEk(z)

on the unit circle?

The experimental evidence for the truth of Conj. 3.4 is also very convincing and will be
outlined along the respective discussion of higher derivatives.
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We end this section by noting that it would be very interesting to interpret the role of
the number a in the statement of the conjecture, and in particular to find an explanation for
them as “trivial zeros”, as was the case for the zeros with a = 2 in Th. 2.6.

3.3 The case of higher derivatives

An advantage of the approach on derivatives of L-function discussed here is that it includes
in a natural way higher derivatives about which, as mentioned earlier, very little is known.
Therefore, any progress by this method in the case of first derivatives might lead to insights
for higher derivatives as well.

The cohomological tool enabling to extend the constructions of Section 3.1 to higher deriva-
tives is cup products. This, in the case we need it, is defined as a map

∪ : C1(Γ,O)⊗ Cm(Γ,O)→ Cm+1(Γ,O)

given by
(φ1 ∪ φ2) (γ1, γ2, . . . , γm+1) := φ1(γ1) (φ(γ2, . . . , γm+1)|0γ1) .

A crucial property that that cup products of cocycles are cocycles. For φi ∈ C1(Γ,O), we set:

φ1 ∪ · · · ∪ φn := φ1 ∪ (φ2 ∪ (. . . (φn−1 ∪ φn) . . . )) ∈ Cn(Γ,O).

If v is the 1-cocycle given by γ → u|0(γ − 1) (with u as in Section 3.1), we set, for n ∈ N,

Vn := v ∪ v ∪ · · · ∪ v (n times).

As mentioned above, this will be a n-cocycle.
Let vf ∈ Cn(Γ,O) be given by

vf (γ1, . . . , γn) =

∫ z

∞
(f(w)− a0)(w − z)k−2Vn(γ1, . . . , γn)(w)dw

+ a0

∫ z

i

(w − z)k−2Vn(γ1, . . . , γn)(w)dw.

Setting σf := dnvf , we arrive at the following analogue of Lemma 3.1 for higher cocycles.

Lemma 3.6. (Lemma 3.6 of [13]) The map σf takes values in Pk−2 and thus gives an (n+1)-
cocycle in Pk−2.

Finally, the analogue of Prop. 3.3 is

Proposition 3.7. (Prop. 3.7 of [13]) For each m ∈ N, set

P (z) =
k−2∑
n=0

(
k − 2

n

)
i1−n

(−n− 1)m+1
zk−2−n.
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Then

(−1)mσf (S, . . . S) =
k−2∑
n=0

(
k − 2

n

)
i1−nΛ

(m)
f (n+ 1)zk−2−n − a(0)m!(P |2−k(1 + (−1)m+1S))(z),

(3.2)
where σf has m+ 1 arguments.

This proposition led us to formulate Conj. 1.3 as the general version of Conj. 3.4.

Conjecture 3.8. For any Hecke eigenform of weight k on SL2(Z), and for each m ∈ Z≥0,
the polynomial

Qf (z) :=
k−2∑
n=0

(
k − 2

n

)
i1−nΛ

(m)
f (n+ 1)zk−2−n

has all its zeros on the unit circle. Moreover, the odd part

k−3∑
n=1
n odd

(
k − 2

n

)
i1−nΛ

(m)
f (n+ 1)zk−2−n

has all of its zeros on the unit circle, except for zeros at 0 and ±a,±1/a for some a ∈ R.

We were able to prove the Eisenstein series case of the second part of this conjecture too,
but we had to truncate the “lower order” terms from the Λ

(m)
f appearing in Qf . The precise

construction is slightly complicated but the essence of the theorem is entirely analogous to
Theorem 3.5 (see Theorem 4.2 of [13]).

The experimental evidence for Conj. 3.8 in the case of both the first and the higher deriva-
tives was based on computer search. In particular, the authors used SAGE to check that the
norms of all zeroes of all full period polynomials with m ≤ 3 and k ≤ 50 were within 10−10

of 1. The structure of the second part of the conjecture was made on the basis of similar
computational experiments.
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