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1. Introduction

The goal of this paper is to provide evidence towards the Birch and Swinnerton-Dyer conjecture
in one-parameter families of elliptic curves. We briefly summarize our results, assuming the reader is
familiar with the notation and subject. Afterwards we review the needed background material from
elliptic curves and previous results in Section 2; for the convenience of the reader, we state all the
conjectures assumed or discussed at various points in Appendix A. We then prove our theorems and
discuss generalizations to other families of L-functions in Section 3, where we give explicit non-trivial
upper and lower bounds.

The Birch and Swinnerton Dyer conjecture asserts that if E is an elliptic curve whose Mordell–Weil
group E(Q) has geometric rank r, then the associated completed L-function Λ(s, E) has analytic rank
r (i.e., it vanishes to order r at the central point). This is an exceptionally hard problem to investigate,
theoretically and numerically. While there is some theoretical evidence when the rank is at most 1,
the general case is intractable both theoretically and experimentally. For example, although we can
construct elliptic curves with geometric rank exceeding 20, the largest known lower bound for the
analytic rank of a Λ(s, E) is only 3.1

We consider the following natural question. Let E be an elliptic curve with geometric rank r,
and assume the Generalized Riemann Hypothesis (GRH). The Birch and Swinnerton-Dyer conjecture
predicts that there should be r zeros at the central point. How far must we go along the critical line before
we are assured of seeing r zeros?

If NE denotes the conductor of the elliptic curve, we expect the correct scale for zeros near the
central point to be of size 1/ log NE . Miller [Mil3] investigated the first few zeros above the central
point for the family of all elliptic curves as well as one-parameter families of small rank over Q(T ).
His results are consistent with the low zeros being of height on the order of 1/ log NE ; however,
the first few zeros are higher than the NE → ∞ scaling limits predicted by the independent model
of random matrix theory. The data suggests that, for finite conductors, better agreement is obtained
by modeling these zeros with the interaction model (which involves Jacobi ensembles). Determining
the correct corresponding random matrix ensemble involves understanding the discretization of the
central values of L-functions and the lower order terms in the one-level density. In his thesis Duc
Khiem Huynh [Huy] successfully modeled the first zero of the family of quadratic twists of a fixed
elliptic curve, and current work by the second named author and Eduardo Dueñez, Duc Khiem Huynh,
Jon Keating and Nina Snaith is investigating the case of a general one-parameter family [DHKMS1,
DHKMS2].

The best theoretical result on the first zero above the central point is due to Mestre. As-
suming the Generalized Riemann Hypothesis, Mestre [Mes] bounded the analytic rank of E by
O (log NE/ log log NE ) and showed its first zero above the central point is at most B/ log log NE . While
this is significantly larger than what we expect the truth to be, namely O (1/ log NE ), it has the ad-
vantage of holding for all elliptic curves.

In this note we show that we may reduce the window on the critical line to something of the ex-
pected order if we average over a one-parameter family of elliptic curves. Specifically, consider a one-
parameter family E : y2 = x3 + A(T )x + B(T ) of geometric rank r over Q(T ), with A(T ), B(T ) ∈ Z[T ].

1 The number of terms needed for the computation is on the order of the square-root of the conductor of E , which grows
rapidly in families. While it is possible to numerically show that the first r Taylor coefficients of Λ(s, E) are close to zero for
many E ’s with geometric rank r, in general these computations can only provide evidence. The exception is when we have
formulas for the derivatives as a known quantity times a rational, in which case we can convert these calculations to proofs
of vanishing. See http://web.math.hr/~duje/tors/rk28.html for an example by N. Elkies of an elliptic curve with
geometric rank at least 28.

http://www.youtube.com/watch?v=3EVYPNi_LG0
http://www.youtube.com/watch?v=3EVYPNi_LG0
http://web.math.hr/~duje/tors/rk28.html
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For each t ∈ Z we may specialize and obtain an elliptic curve Et : y2 = x3 + A(t)x + B(t) with con-
ductor Nt := NEt . By Silverman’s specialization theorem [Sil2], for all t sufficiently large each elliptic
curve Et has geometric rank at least r. Assuming standard conjectures, Helfgott [He] proved that for
a generic family the sign of the functional equation is 1 half the time and −1 the other half. It is be-
lieved that a generic curve in a generic family has analytic rank as small as possible consistent with
all constraints. In our case, as the rank must be at least r if the Birch and Swinnerton-Dyer conjecture
is true, we expect that in the limit half the curves will have analytic rank r and the other half r + 1,
for an average rank of r + 1

2 .
We take our family to be F R := {Λ(s, Et): R � t � 2R} with R → ∞, though we often abuse

notation and use F R to denote t in [R,2R]. There are two ways to normalize the zeros of Λ(s, Et) near
the central point: (1) globally, using log N

2π := 1
R

∑
t∈F R

log Nt
2π ; (2) locally, using log Nt

2π . It is significantly
easier to use the global rescaling; however, as each elliptic curve can be considered independent of
the family, it is more correct to use the local rescaling (in this case, due to the technicalities that arise we
must add some additional restrictions on which t ∈ [R,2R] are in the family).

Before stating our main result, we must first introduce some notation. All conjectures are stated in
full in Appendix A.

Definition 1.1 (Sieved family). Let E : y2 = x3 + A(T )x + B(T ) be a one-parameter family of elliptic
curves over Q(T ) with discriminant �(T ), let D(T ) be the product of the irreducible polynomial
factors of the discriminant, and let B be the largest square dividing D(t) for all integers t . For a fixed
c, t0, our family is the set of all t = ct′ +t0 (with t ∈ [R,2R]) such that D(ct′ +t0) is square-free except
for primes p|B where the power of such p|D(t) is independent of t . In [Mil2] it is shown that for any
one-parameter family, there is a choice of c and t0 such that the number of such t is cE R + o(R) for
some cE > 0 if every irreducible polynomial factor of �(T ) has degree at most 3 (if not, the claim
is true if we assume either the ABC or Square-Free Sieve Conjecture). We let F ′

R denote the sieved
family.

Definition 1.2 (Average number of zeros in a family). Let E : y2 = x3 + A(T )x + B(T ) be a one-parameter
family of elliptic curves over Q(T ) with specialized curves Et with conductors Nt . Assume GRH and
write the non-trivial zeros of Λ(s, Et) as 1

2 + iγt, j , and set

log N

2π
:= 1

R

2R∑
t=R

log Nt

2π
. (1.1)

The average number of zeros with imaginary part at most τ (in absolute value) under the global and
local renormalizations are defined to be

Z (global)
ave,E ,R(τ ) := 1

R

2R∑
t=R

#

{
j: γt, j

log N

2π
∈ [−τ , τ ]

}
,

Z (local)
ave,E ,R(τ ) := 1

|F ′
R |

2R∑
t=R

t∈F ′
R

#

{
j: γt, j

log Nt

2π
∈ [−τ , τ ]

}
, (1.2)

with F ′
R as in Definition 1.1.

The Birch and Swinnerton-Dyer conjecture implies that, for families where half the curves have
even and half have odd sign,

Z (global)
ave,E ,R(0) = Z (local)

ave,E ,R(0) � r + 1
.

2
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Our main results are upper and lower bounds for how many normalized zeros there are on average
in the interval [−τ , τ ], in particular, how small we may take τ and be assured on average that there
are r + 1

2 zeros in the interval.

Theorem 1.3. Let E be a one-parameter family of elliptic curves of geometric rank r over Q(T ); if E is not a
rational surface (see Remark A.1 for a definition) then assume Tate’s conjecture. Additionally, if we are using
the local renormalization of the zeros we must assume either the ABC or the Square-Free Sieve Conjecture if the
discriminant has an irreducible polynomial factor of degree at least 4.

Let σ be chosen such that we can compute the one-level density (defined in Section 2.3) for even Schwartz
test functions φ with supp(φ̂) ⊂ (−σ ,σ ); see Theorem 2.3 for details on what σ are permissible for a given
family.

Then

• Lower bounds for the average number of normalized zeros in [−τ , τ ]. Let the notation be as in
Definition 1.2, and assume GRH. Let h be any even, twice continuously differentiable function supported on
[−1,1] and monotonically decreasing on [0,1]. For fixed τ > 0 let f (y) = h(2y/σ ), g(y) = ( f ∗ f )(y)

(the convolution of f with itself ), and let φ(x) equal the Fourier transform of g(y)+ (2πτ)−2 g′′(y). Note
supp(φ̂) ⊂ (−σ ,σ ) and φ(x) is non-negative for |x| < τ and non-positive for |x| > τ . Then

Z (global)
ave,E ,R(τ ), Z (local)

ave,E ,R(τ ) �
(

r + 1

2

)
+ φ̂(0)

φ(0)
+ O

(
log log R

φ(0) log R

)
, (1.3)

where φ̂(0)/φ(0) depends on the fixed τ :

φ̂(0)

φ(0)
= (

∫ 1
0 h(u)2 du) + ( 1

στπ )2(
∫ 1

0 h(u)h′′(u)du)

σ (
∫ 1

0 h(u)du)2
. (1.4)

If we let τBSD(σ ) denote the value of τ such that we are assured of at least r + 1
2 zeros on average (as

R → ∞) in [−τ , τ ] given that we can compute the one-level density for test functions whose Fourier
transform is supported in (−σ ,σ ), then

τBSD(σ ) � 1

π

(
−

∫ 1
0 h(u)2 du∫ 1

0 h(u)h′′(u)du

)−1/2 1

σ
:= 1

πC(h)σ
. (1.5)

This should be compared to the predictions from the Birch and Swinnerton-Dyer and parity conjectures for
a generic family, which predict τBSD(σ ) = 0. In particular, taking

h(x) =
{

(1 − x2)(1 − 0.233428x2 + 0.0189588x4) if |x| � 1,

0 otherwise
(1.6)

yields

τBSD(σ ) � 1

πC(h)σ
, (1.7)

where C(h) ≈ 0.63662 (which is approximately 2/π ); note 1/πC(h)σ is approximately 1/2σ . In the
arguments below we use 2/π for brevity without reminding the reader that the numerical calculation is
only close to the above.
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• Upper bounds for the average number of normalized zeros in [−τ , τ ]. Let ψ be a twice continu-
ously differentiable even Schwartz test function with supp(ψ̂) ⊂ (−σ ,σ ), ψ(x) � 0 for all x, and ψ(x)
monotonically decreasing on [0, τ ). Then

Z (global)
ave,E ,R(τ ), Z (local)

ave,E ,R(τ )

�
(

r + 1

2

)
+ (r + 1

2 )(ψ(0) − ψ(τ )) + ψ̂(0)

ψ(τ )
+ O

(
log log R

ψ(0) log R

)
. (1.8)

If we consider the interval (− 1
2σ , 1

2σ ) from the lower bound, taking ψ(x) = ( sin xπσ
xπσ )2 yields the average

number of normalized zeros in the limit in this interval is at most (r + 1
2 + 1

σ )/ψ(1/2σ) = π2

4 (r + 1
2 + 1

σ ).

• Random matrix theory prediction. Let E be a generic one-parameter family of elliptic curves of rank r
over Q(T ) with half of the specialized functional equations even and half odd. Assuming the Katz–Sarnak
density conjecture, as R → ∞ the average number of normalized zeros in [−τ , τ ] is (r + 1

2 ) + 2τ ; more
precisely, random matrix theory predicts

lim
R→∞ Z (global)

ave,E ,R(τ ), lim
R→∞ Z (local)

ave,E ,R(τ ) = r + 1

2
+ 2τ . (1.9)

In particular, setting τ = 1
2σ yields a prediction of r + 1

2 + 2 · 1
2σ normalized zeros in the limit on average.

In summary, the number of normalized zeros on average as R → ∞ in the interval (− 1
2σ , 1

2σ ) satisfies

r + 1

2
� lim

R→∞ Z (global)
ave,E ,R

(
1

2σ

)
, lim

R→∞ Z (local)
ave,E ,R

(
1

2σ

)
� π2

4

(
r + 1

2
+ 1

σ

)
, (1.10)

and this interval contains the prediction from random matrix theory, r + 1
2 + 1

σ .

Remark 1.4. We obtained our upper bound for τBSD(σ ) by setting φ̂(0)/φ(0) = 0. The important item
to note is that τBSD(σ ) (or any τ ) is inversely proportional to the support σ . In other words, the
larger we may take σ , the more we may concentrate φ near the central point and thus the smaller
the window. Random matrix theory predicts we may take σ arbitrarily large, which would imply we
may take τ arbitrarily small and thus prove the Birch and Swinnerton-Dyer conjecture on average.

2. Background material and previous results

2.1. Elliptic curves

We quickly review the needed background material on elliptic curves; the reader familiar with the
notation and theory may safely skip this subsection. See [Kn,Kob,Sil1,ST] for proofs, as well as the
survey [Yo1].

Let E be an elliptic curve over Q, say y2 = x3 + ax + b with a,b ∈ Z, and set

E(Q) := {
(x, y) ∈ Q2: y2 = x3 + ax + b

}
. (2.1)

We can define addition of two elements of E(Q) as follows (see Fig. 1). If P = (x1, y1) and Q =
(x2, y2) are in E(Q), then the line y = mx + b connecting them has rational coordinates.2 Substituting
this expression for y into the elliptic curve, we find (mx + b)2 = x3 + ax + b. This is a cubic in x

2 We assume the two points are distinct; if they are the same, the argument below must be slightly modified.
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Fig. 1. The addition law on an elliptic curve. In the second example the line is tangent to E at P .

with rational coefficients. By construction two of its roots are x1 and x2, both rational numbers.

Thus the third root, say x3, must also be rational. Set R(P , Q ) = (x3,

√
x3

3 + ax3 + b) and R̃(P , Q ) =
(x3,−

√
x3

3 + ax3 + b). If we define addition by P ⊕ Q = R̃(P , Q ), then this (plus adding a ‘point at

infinity’) turns E(Q) into a finitely generated abelian group. We write E(Q) as Zr ⊕ T, where T is a
torsion group3 and r is called the geometric rank of the curve.

Given an elliptic curve E as above, we may associate an L-function as follows. Assume y2 = x3 +
ax + b is a globally minimal Weierstrass equation for E/Q with discriminant � = −16(4a3 + 27b2)

and conductor NE . Set

aE(p) := p − #
{
(x, y) ∈ (Z/pZ)2: y2 ≡ x3 + ax + b mod p

}
. (2.2)

Note that the aE(p)’s encode local data, specifically the number of solutions modulo p. Hasse proved
|aE(p)| � 2

√
p, and we define the L-function by

L(s, E) :=
∏
p|�

(
1 − aE(p)√

p
p−s

)−1 ∏
p��

(
1 − aE(p)√

p
p−s + p−2s

)−1

; (2.3)

we have included the factors of
√

p so that the completed L-function has a functional equation from
s to 1 − s and not 2 − s:

Λ(s, E) :=
(√

N

2π

)s

Γ

(
s + 1

2

)
L(s, E) = εEΛ(1 − s, E), (2.4)

where εE ∈ {1,−1} is the sign of the functional equation. The following work of Wiles [Wi], Taylor and
Wiles [TW] and Breuil, Conrad, Diamond, and Taylor [BCDT], we may associate a weight 2 modular
form f to any elliptic curve E , where the level of f equals the conductor NE of E . We have Λ(s, f ) =
Λ(s, E); in particular, the completed L-function converges for all s. We call the order of vanishing of
Λ(s, E) at s = 1/2 the analytic rank of E .

The Birch and Swinnerton-Dyer conjecture [BS-D1,BS-D2] states4 that the order of vanishing of
Λ(s, E) at the central point s = 1/2 equals the rank of the Mordell–Weil group E(Q), or that the
analytic rank equals the geometric rank. Sadly, we are far from being able to prove this, though the
evidence for the conjecture is compelling, especially in the case of complex multiplication and rank at
most 1 [Bro,CW,GKZ,GZ,Kol1,Kol2,Ru]. In addition there is much suggestive numerical evidence for the

3 Mazur [Ma] proved that torsion group is one of the following: Z/NZ for N ∈ {1,2, . . . ,10,12} or Z/2 × Z/2NZ for N ∈
{1,2,3,4}.

4 There is a more precise form of the conjecture which relates the leading term in the Taylor expansion to the period integral,
regulator, Tamagawa numbers and the Tate–Shafarevich group, but this version is not needed for our purposes.
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conjecture; for example, for elliptic curves with modest geometric rank r, numerical approximations
of the first r − 1 Taylor coefficients are consistent with these coefficients vanishing.

2.2. Explicit formula

One powerful tool for investigating the Birch and Swinnerton-Dyer conjecture is the explicit for-
mula (see [RS] for a proof for a general L-function, or [Mil1] for the calculation for elliptic curves),
which connects the zeros of an L-function to the Fourier coefficients.

Theorem 2.1. Let φ be an even, twice continuously differentiable test function whose Fourier transform

φ̂(y) :=
∞∫

−∞
φ(x)e−2π ixy dx (2.5)

has compact support, and denote the non-trivial zeros of Λ(s, E) by 1
2 + iγE; j (under the Generalized Riemann

Hypothesis, each γE; j ∈ R). Then

∑
γE; j

φ

(
γE; j

log NE

2π

)
= φ̂(0) + φ(0) − 2

∑
p

aE(p) log p

p log NE
φ̂

(
log p

log NE

)

− 2
∑

p

a2
E(p) log p

p2 log NE
φ̂

(
2 log p

log NE

)
+ O

(
log log NE

log NE

)
. (2.6)

Using the explicit formula, Mestre proved the following theorem.5

Theorem 2.2. (See Mestre [Mes].) Assuming the Generalized Riemann Hypothesis:

(1) The order of vanishing at the central point is O (log NE/ log log NE).
(2) There is an absolute constant B such that the first zero above the central point occurs before B/ log log NE .

From the functional equation, however, we expect the first zero above the central point to be on
the order of 1/ log NE , and not 1/ log log NE . Thus Mestre’s result is significantly larger than what
we expect the truth to be; however, it holds for any elliptic curve. The situation is very different if
instead we consider families of elliptic curves. By averaging the explicit formula over the family and
exploiting cancelation in the sums of the Fourier coefficients aE (p), it is possible to prove (on average)
significantly better results.

Numerous studies have been concerned with bounding the average rank in families. We list some
of the frequently studied families below (note that, for technical reasons, often one has to do some
sieving and remove some curves in order to make certain sums tractable). These results are obtained
by averaging the explicit formula over some family F R , where R is a parameter localizing the con-
ductors, and sending R → ∞.

• The family of all elliptic curves: y2 = x3 + Ax + B , and F R = {(A, B): |A| � R2, |B| � R3} (or
something along these lines).

• One parameter families over Q(T ): y2 = x3 + A(T )x + B(T ), with A(T ), B(T ) ∈ Z[T ] and either
F R = {t: R � t � 2R} or a sub-family of this where the conductors are given by a polynomial.

5 Mestre actually proved more, as his results hold for any weight k cuspidal newform, and not just elliptic curves (which
correspond to weight 2 cuspidal newforms).
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• Quadratic (or higher) twists of a fixed elliptic curve: dy2 = x3 + ax + b, with F R = {d: d � R
a fundamental discriminant}.

The current record belongs to M. Young [Yo2], who showed the average rank in the family of all
elliptic curves is bounded by 25/14 ≈ 1.79; results for one-parameter families and quadratic twist
families are significantly worse. For a sample of the literature, see [BMSW,Bru,BM,CPRW,DFK,Gao,Go,
GM,H-B,Kow1,Kow2,Mi,Mil2,RSi,RuSi,Sil3,Yo2,ZK] (especially the surveys [BMSW,Kow1,RuSi]).

2.3. The one-level density

For a family F R of L-functions ordered by conductor (with R → ∞), the averaged explicit formula
is called the one-level density. Specifically, let φ be an even Schwartz test function whose Fourier
transform is supported in (−σ ,σ ), and denote the zeros of L(s, f ) by 1/2 + iγ f , j (under GRH each
γ f , j ∈ R). Let N f denote the analytic conductor of L(s, f ). We define the one-level density by

D F R (φ) := 1

|F R |
∑
f ∈F R

∑
j

φ

(
γ f ; j

log N f

2π

)
. (2.7)

This statistic has been fruitfully used by many researchers to study the zeros of elliptic curves L-
functions (as well as other families of L-functions) near the central point.

Unlike the n-level correlations, which are the same for any cuspidal newform arising from an auto-
morphic representation (see [Hej,Mon,RS]), the one-level density for a family of L-functions depends
on the symmetry of the family. Katz and Sarnak [KS1,KS2] conjecture that families of L-functions
correspond to classical compact groups; specifically, the behavior as the conductors tend to infinity
of zeros (respectively values) of L-functions is well modeled by the limit as the matrix size tends
to infinity of roots (respectively values) of characteristic values of random matrices.6 They conjecture
that

lim
R→∞ D F R (φ) =

∫
φ(x)W G(F )(x)dx, (2.8)

where G(F ) indicates unitary, symplectic or orthogonal (possibly SO(even) or SO(odd)) symmetry;
this has been observed in numerous families. Note by Parseval’s theorem that∫

φ(x)W G(F )(x)dx =
∫

φ̂(y)Ŵ G(F )(y)dy. (2.9)

Let I(u) be the characteristic function of [−1,1]. Katz and Sarnak prove the Fourier transforms of
the one-level densities of the classical compact groups are

ŴSO(even)(u) = δ(u) + 1

2
I(u),

ŴSO(u) = δ(u) + 1

2
,

ŴSO(odd)(u) = δ(u) − 1

2
I(u) + 1,

6 These conjectures are a natural outgrowth of observed similarities between behavior of L-functions and matrix ensembles.
While random matrix theory first arose in statistics problems in the early 1900s (see for example [Wis]), it blossomed in the
1950s when it was successfully applied to describe the energy levels of heavy nuclei. Its connections to number theory were
first noticed by Montgomery [Mon] and Dyson in the 1970s in studies of the pair correlation of zeros of ζ(s). See [FM] for a
survey on the development of the subject and some of the connections between the two fields.



J. Goes, S.J. Miller / Journal of Number Theory 130 (2010) 2341–2358 2349
ŴUSp(u) = δ(u) − 1

2
I(u),

ŴU(u) = δ(u). (2.10)

For functions whose Fourier transforms are supported in [−1,1], the three orthogonal densities are
indistinguishable, though they are distinguishable from U and Sp. To detect differences between the
orthogonal groups using the one-level density, one needs to work with functions whose Fourier trans-
forms are supported beyond [−1,1].7

For families of elliptic curves with rank, it is useful to consider additional subgroups of the classical
compact groups above. We consider the N → ∞ scaling limits of matrices of the form(

Ir,r

g

)
,

where Ir,r is the r × r identity matrix and g is an N × N orthogonal matrix (drawn from either the
full orthogonal family or one of the split families, namely even or odd). These matrices have r forced
eigenvalues at 1 (or r eigenangles at 0) for each g; thus as we vary g in one of the three families we
obtain the same one-level densities as before except for an additional factor of r. Explicitly,

Ŵr;SO(even)(u) = δ(u) + 1

2
I(u) + r,

Ŵr;SO(u) = δ(u) + 1

2
+ r,

Ŵr;SO(odd)(u) = δ(u) − 1

2
I(u) + 1 + r. (2.11)

For our elliptic curve families, we must evaluate the average over F R or F ′
R of (2.6). Note that almost

all of the conductors will be a bounded power of R for t ∈ [R,2R]. If we rescale each elliptic curve
E ’s zeros by the correct local factor, namely (log NE )/2π , we have

D local
F R

(φ) = 1

|F R |
∑

E∈F R

∑
γE; j

φ

(
γE; j

log NE

2π

)

= φ̂(0) + φ(0) − 2
1

|F R |
∑

E∈F R

∑
p

aE(p) log p

p log NE
φ̂

(
log p

log NE

)

− 2
1

|F R |
∑

E∈F R

∑
p

a2
E(p) log p

p2 log NE
φ̂

(
2 log p

log NE

)
+ O

(
log log R

log R

)
. (2.12)

The difficulty with this expression is that, as the conductors are varying, we cannot easily pass the
sum over the family through the test function to the Fourier coefficients aE (p) and aE(p)2. By sieving
it is possible to surmount these technical details; this is the main result in [Mil2].

7 One can also distinguish between the various orthogonal groups by looking at the 2-level density, as these three ensembles
have distinct behavior for arbitrarily small support; see for instance [Mil2]. If n � 3, the determinant expansions for the n-level
density are hard to work with; in fact, in Gao’s thesis [Gao] he is able to compute the number theory and random matrix theory
results for greater support than he can show agreement. In place of the determinant formulas, one can also use expansions from
[HM]; though these hold for smaller support, they are sometimes easier for comparisons.



2350 J. Goes, S.J. Miller / Journal of Number Theory 130 (2010) 2341–2358
If instead we rescale the zeros of each elliptic curve E ’s L-function by the global factor, namely

log N

2π
= 1

|F R |
∑

t∈F R

log NE

2π
, (2.13)

then we find

Dglobal
F R

(φ) = 1

|F R |
∑

E∈F R

∑
γE; j

φ

(
γE; j

log N

2π

)

= φ̂(0) + φ(0) − 2
1

|F R |
∑

E∈F R

∑
p

aE(p) log p

p log N
φ̂

(
log p

log N

)

− 2
1

|F R |
∑

E∈F R

∑
p

a2
E(p) log p

p2 log N
φ̂

(
2 log p

log N

)
+ O

(
log log N

log N

)
. (2.14)

The analysis is significantly easier here, as now we can pass the summation over the family past the
test function and exploit cancelation in sums of the Fourier coefficients aE(p) and aE (p)2.

We quote the best known results for general one-parameter families.

Theorem 2.3. (See Miller, Theorem 7.8 of [Mil1] or Theorem 5.8 of [Mil2].) Notation:

• Let E be a one-parameter family of elliptic curves of geometric rank r over Q(T ).
• Let φ be a twice continuously differentiable function8 with supp(φ̂) ⊂ (−σ ,σ ).
• Consider the sieved family (see Definition 1.1), and denote the degree of the conductor polynomial by m.
• Let G denote either SO, SO(even) or SO(odd).

Assume

• If E is not a rational surface (see Remark A.1 for a definition) then assume Tate’s conjecture.
• If the discriminant has an irreducible polynomial factor of degree at least 4, assume either the ABC or the

Square-Free Sieve Conjecture.

Then

D local
F R

(φ) =
∫

φ̂(y)Ŵr;G(y)dy =
(

r + 1

2

)
φ(0) + φ̂(0) + O

(
log log R

log R

)
(2.15)

provided σ < min(1/2,2/3m); a similar result holds for Dglobal
F R

(φ) (without the assumptions that E satisfies
Tate’s hypothesis and without assuming either the ABC or Square-Free Sieve Conjecture).

Remark 2.4. We briefly discuss some consequences and generalizations of the above theorem.

• Similar statements hold for quadratic twist families and the family of all elliptic curves.
• The above result provides evidence that the zeros of one-parameter families of rank r over Q(T )

are modeled by the scaling limits of orthogonal matrices with r independent eigenvalues of 1.

8 While the theorem was proved under the assumption that φ is Schwartz, a careful analysis of the argument reveals it
suffices that φ be twice differentiable.
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• As supp(φ̂) ⊂ (−1,1), the three orthogonal groups have indistinguishable one-level densities. We
can see which group correctly models our family by studying the 2-level density, which requires
us to understand the distribution of signs of the functional equations in our family.

3. Proof of Theorem 1.3

3.1. Preliminaries

Before proving Theorem 1.3, we first prove general results for the upper and lower bounds in a
window of variable size for a general family of L-functions. Theorem 1.3 then follows immediately
from Theorem 3.1, Theorem 2.3 and the constructions of test functions satisfying the necessary con-
ditions, which are given below.

Theorem 3.1. Let F R denote a family of L-functions, and let Z (global)
ave,F ,R(τ ), Z (local)

ave,F ,R(τ ) be defined as in Defini-
tion 1.2. Let φ(x) and ψ(x) be twice continuously differentiable functions with Fourier transform supported in
(−σ ,σ ). Assume for both normalizations of zeros that there are constants a and b such that one has

D F R (φ) = aφ(0) + bφ̂(0) + O

(
log log R

log R

)
, (3.1)

as well as the corresponding formula for D F R (ψ) with replacing φ by ψ in (3.1). If φ(x) � 0 for |x| � τ and
φ(x) � 0 whenever |x| � τ , and if φ(x) is largest when x = 0, then

Z (global)
ave,F ,R(τ ), Z (local)

ave,F ,R(τ ) � a + b
φ̂(0)

φ(0)
+ O

(
log log R

φ(0) log R

)
, (3.2)

while if ψ(x) � 0 for all x and is monotonically decreasing on (0, τ ), then

Z (global)
ave,F ,R(τ ), Z (local)

ave,F ,R(τ ) � a + a(ψ(0) − ψ(τ )) + bψ̂(0)

ψ(τ )
+ O

(
log log R

ψ(0) log R

)
. (3.3)

Proof. We give the proof for the local rescaling; the global case follows analogously. As φ(x) is non-
positive for |x| � τ , the contribution to the one-level density from the scaled zeros as large or larger
than τ in absolute value is non-positive; thus if we remove these contributions then the one-level
density gives the lower bound

1

|F R |
∑
f ∈F R

∑
|γ f ; j |�τ

φ(γ̃ f ; j) � aφ(0) + bφ̂(0) + O

(
log log R

log R

)
. (3.4)

As φ is maximized at 0, we increase the left-hand side above by replacing φ(γ̃ f ; j) with φ(0); do-

ing so and dividing by φ(0) yields the claimed bound for Z (local)
ave,F ,R(τ ). The upper bound is proved

analogously. �
Remark 3.2. These results are of course not of interest unless we are able to construct φ and ψ

satisfying the conditions in Theorem 3.1. For one-parameter families of elliptic curves of rank r over
Q(T ), we have a = r + 1

2 and b = 1.

Remark 3.3. For test functions whose Fourier transform is supported in (−1,1), all known one-level
densities of families of L-functions are in the form of Theorem 3.1, and thus our results are imme-
diately applicable. For some families where the support exceeds (−1,1) (such as families of cuspidal
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newforms of square-free level split by sign of the functional equation), a little more work is needed
as the functional form of the one-level density is different.9 For ease of exposition in this paper we
confine ourselves to the (−1,1) case.

3.2. Proof of Theorem 1.3

The main step in the proof of Theorem 1.3 is showing that our result is non-vacuous by con-
structing φ and ψ with the claimed properties. Our construction of φ is almost surely similar to the
construction implicit in Mestre’s work [Mes]; see also Hughes and Rudnick [HR].

Proof of the lower bound in Theorem 1.3. We give the lower bound for the number of zeros in
[−τ , τ ] by constructing a good test function φ. As our results depend on the support of φ̂ (which is
finite), it is convenient to normalize our test function and express everything in terms of h, which we
take to be an even, twice continuously differentiable function supported on (−1,1) and monotonically
decreasing on [0,1). For fixed σ ,τ > 0 let f (y) = h(2y/σ ), g(y) = ( f ∗ f )(y) (the convolution10 of
f with itself), and let φ(x) equal the Fourier transform of g(y) + (2πτ)−2 g′′(y). We must show (i)
supp(φ̂) ⊂ (−σ ,σ ) and (ii) φ(x) is non-negative for |x| < τ and non-positive for |x| > τ .

The proof of (i) follows from standard properties of convolution. Specifically, as supp( f ) ⊂
(−σ/2, σ /2), we have supp(g) ⊂ (−σ ,σ ).11 As the support of g′′ is contained in the support of
g and φ̂(y) = g(y) + (2πτ)−2 g′′(y), the support of φ̂ is contained in (−σ ,σ ) as claimed.

For (ii), the Fourier transform of g′′(y) is −(2π y)2 ĝ(y) (the Fourier transform converts differentia-
tion to multiplication by 2π ix in our normalization). Further g = f ∗ f implies g′′ = f ∗ f ′′ . Combining
the above, we find12 the Fourier transform of φ̂(y) = g(y)+(2πτ)−2 g′′(y) is φ(x) = ĝ(x) ·(1−(x/τ )2).

To complete the proof, we must show

φ̂(0)

φ(0)
= (

∫ 1
0 h(u)2 du) + ( 1

στπ )2(
∫ 1

0 h(u)h′′(u)du)

σ (
∫ 1

0 h(u)du)2
. (3.5)

By construction we have

φ̂(0)

φ(0)
= g(0) + (2πτ)−2 g′′(0)

ĝ(0)
. (3.6)

Since g is even and monotonically decreasing near the origin (as g has a maximum at 0), g′′(0) < 0.
Thus larger values of τ should decrease the ratio above, at the cost of increasing the size of our
window.

From our construction, as h and f are even we have

g(0) =
σ/2∫

−σ/2

f (t)2 dt = 2

σ/2∫
0

h

(
2t

σ

)
dt = σ

1∫
0

h(u)2 du (3.7)

and

9 For the family of Dirichlet characters of prime conductor, the one-level density is known to be φ̂(0) for support is known
up to (−2,2), and thus is of the desired form.
10 The convolution is defined by (A ∗ B)(x) = ∫ ∞

−∞ A(t)B(x − t)dt .
11 We may interpret the relation between f and g as follows. Let X be a random variable with density f supported in
(−σ/2, σ /2). Then g = f ∗ f is the density of X + X , and is supported in (−σ ,σ ).
12 As φ and φ̂ are even, the Fourier transform of the Fourier transform is the original function φ(x); if φ were not even, we

would have to replace φ(x) with φ(−x).
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g′′(0) =
σ/2∫

−σ/2

f (t) f ′′(t)dt

= 2

σ/2∫
0

f (t) f ′′(t)dt

= 8

σ 2

σ/2∫
0

h

(
2t

σ

)
h′′

(
2t

σ

)
dt

(
since f (t) = h

(
2t

σ

)
, f ′′(t) = 4

σ 2
h

(
2t

σ

))

= 4

σ

1∫
0

h(u)h′′(u)du. (3.8)

As the Fourier transform of a convolution is the product of the Fourier transforms, a straightforward
calculation yields

ĝ(0) = f̂ (0) · f̂ (0) = σ 2

( 1∫
0

h(u)du

)2

. (3.9)

Collecting the above equalities, after some elementary algebra we can express the ratio φ̂(0)/φ(0) in
terms of h as

φ̂(0)

φ(0)
= (

∫ 1
0 h(u)2 du) + ( 1

στπ )2(
∫ 1

0 h(u)h′′(u)du)

σ (
∫ 1

0 h(u)du)2
. (3.10)

If we set this ratio equal to zero (i.e., if we choose τ so that the numerator vanishes) then we find13

that on average there are at least r + 1
2 normalized zeros in the band (− 1

πC(h)σ , 1
πC(h)σ ), where

C(h) =
(

−
∫ 1

0 h(u)2 du∫ 1
0 h(u)h′′(u)du

)1/2

. � (3.11)

Proof of the upper bound in Theorem 1.3. The proof is similar to that of the lower bound; in partic-
ular, once we construct a function ψ with the desired properties then the claim follows immediately
from straightforward algebra.

We are thus again reduced to constructing a function with the specified properties. For conve-
nience we construct a ψ which is not Schwartz, but which is twice differentiable; a careful analysis
of the proof of Theorem 2.3 shows that this suffices, and thus such a ψ is sufficient for our purposes.

Consider the function ψ(x) = ( sin xπσ
xπσ )2 with a compactly supported Fourier transform given by

ψ̂(y) =
{

1
σ (1 − |y|

σ ) if y ∈ (−σ ,σ ),

0 if y /∈ (−σ ,σ );
(3.12)

13 In obvious notation, we have
∫ 1

0 h2 � −(πστcritical)
−2

∫ 1
0 hh′′ . We see

∫ 1
0 hh′′ � 0, and thus τcritical � (− ∫ 1

0 h2/∫ 1
0 hh′′)−1/2(πσ )−1.
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Fig. 2. Plot of ψ(x) = (
sin(xπσ)

xπσ )2 for σ = 1.

see Fig. 2 for a plot. Away from the origin, the derivative is given by

ψ ′(x) = 2 sin(σπx)

σπx2

(
cos(σπx) − sin(σπx)

σπx

)
. (3.13)

It is easy to see that the global maximum is at x = 0 and that ψ(x) is decreasing up to x = 1/σ , prov-
ing the claim for any τ � 1/σ (though the bound worsens as τ approaches 1/σ as ψ(1/σ ) = 0). �
Proof of the random matrix theory prediction in Theorem 1.3. We assume the conjectures from ran-
dom matrix theory hold for any even test function, and not just Schwartz test functions. We therefore
take φ(x) to be the characteristic function of the interval [−τ , τ ], which has Fourier transform equal
to sin(2πτ y)

2πτ y · 2τ . Using such a test function simply counts all normalized zeros in our family that are
in [−τ , τ ] (there is no weighting as φ is identically 1 in this interval). Thus the predicted average
number of such zeros in this interval as R → ∞ is

∞∫
−∞

φ̂(y)Ŵr;SO(y)dy =
∞∫

−∞
φ̂(y)

(
δ(y) + 1

2
+ r

)
dy

=
(

r + 1

2

)
φ(0) + φ̂(0)

= r + 1

2
+ 2τ . � (3.14)

3.3. Explicit upper and lower bounds

We conclude by determining the upper and lower bounds from Theorem 1.3 for the average num-
ber of normalized zeros in given intervals as R → ∞.

We first consider the lower bound, which means we must maximize C(h) (as it is in the denom-
inator for τ , the larger C(h) the smaller the window). As the optimal choice of h (in a given class of
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functions) is only slightly better than similar h, we do not spend too much time on determining the
truly best h. Consider the family of functions given by

hn(x) = (
1 − x2)(1 + a2x2 + · · · + a2i x

2i + · · · + a2nx2n). (3.15)

We set a0 = 1 as the maximum is to occur at x = 0, and since the ratio is invariant under rescaling
the ai ’s, we might as well take a0 = 1. Note that each a2i+1 = 0 as our function is even. We chose hn

of this form as this forces hn to be even and to vanish at ±1. We have

C(hn) =
(

−
∫ 1

0 hn(u)2 du∫ 1
0 hn(u)h′′

n(u)du

)1/2

. (3.16)

The optimum value of the square-root appears to be 2/π . For example, when n = 2 we must compute

max
a2,a4

(
−

8
15 + 16a2

105 + 8a2
2

315 + 16a4
315 + 16a2a4

693 + 8a2
4

1287

− 4
3 − 8a2

15 − 44a2
2

105 − 8a4
35 − 8a2a4

15 − 52a2
4

231

)1/2

= max
a2,a4

(
6006 + 286a2

2 + 572a4 + 70a2
4 + 52a2(33 + 5a4)

39(385 + 121a2
2 + 66a4 + 65a2

4 + 154a2(1 + a4))

)1/2

. (3.17)

Using Mathematica we find the optimal values are a2 ≈ −.233428 and a4 ≈ .0189588, which leads to
C(h) ≈ 0.63662; as 2/π ≈ 0.63662, this suggests the optimal value of C(h) might be 2/π . This yields
the window (− 1

2σ , 1
2σ ) in which we have on average (as R → ∞) r + 1

2 zeros.

Remark 3.4. As we expect the true answer to be a window of size 0 (i.e., letting σ = ∞), it is
not worthwhile to find the true optimum above merely to save a bit in a few decimal places. The
purpose of this analysis is to show that we do see the correct number of zeros on average in the
limit in a window of size proportional to 1/σ ; the actual value of the proportionality constant, while
interesting, is in some sense immaterial as we believe the density conjecture holds for arbitrary σ .

We list some approximate values for C(h) for other obvious candidates, which are all less than the
0.63662 (which is approximately 2/π ) found above.

• h(x) = (1 − x2)2 has C(h) ≈ 0.57735 (with the quantity inside the square-root looking like 1/3);
if we take just (1 − x2) we get C(h) = √

2/5 ≈ 0.632456.
• h(x) = exp(−1/(1 − x2)) has C(h) ≈ 0.570024.
• h(x) = exp(−.754212/(1 − x2)) has C(h) ≈ 0.575629 (the value of .754212 was obtained by

searching for optimal test functions among exp(−a/(1 − x2))).

We now turn to finding explicit upper bounds for the average number of normalized zeros in
[−τ , τ ] as R → ∞. We continue to analyze the candidate function ψ(x) = (

sin(πσ x)
πσ x )2 (see Fig. 2 for

a plot). We have freedom in terms of how we rate our approximation; for example, we can decrease
the upper bound if we simultaneously decrease the size of the interval.

A natural value to take for the size of our interval is the optimal interval found in the lower bound
analysis, namely τ is of the order 1/σ . From (1.7), if we take 2/π for C(h) then we take τ = 1/2σ .
As

ψ̂(y) =
{

1
σ (1 − |y|

σ ) if |y| � σ , (3.18)

0 otherwise,
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we have ψ̂(0) = 1/σ , ψ(0) = 1 and ψ(1/2σ) = 4/π2 ≈ 0.405285. Thus after some algebra (see (1.8)
and the lines immediately following this) we see that the average number of normalized zeros in the
interval (− 1

2σ , 1
2σ ) is at most π2

4 (r + 1
2 + 1

σ ).

Appendix A. Standard conjectures

At various points in the paper we assume the following conjectures.

Generalized Riemann Hypothesis (for elliptic curves). Let Λ(s, E) be the completed, normalized L-
function of an elliptic curve E with function equation s → 1 − s. The non-trivial zeros ρ of Λ(s, E) have
Re(ρ) = 1/2.

Birch and Swinnerton-Dyer conjecture. (See [BS-D1,BS-D2].) Let E be an elliptic curve of geometric rank
r over Q with Mordell–Weil group E(Q) = Zr ⊕ T. Then the analytic rank (the order of vanishing of the
completed L-function at the critical point) equals the geometric rank.

Tate’s conjecture for elliptic surfaces. (See [Ta].) Let E /Q be an elliptic surface and L2(E , s) be the L-
series attached to H2

ét(E /Q,Ql). L2(E , s) has a meromorphic continuation to C and −ords=1 L2(E , s) =
rank N S(E /Q), where N S(E /Q) is the Q-rational part of the Néron–Severi group of E . Further, L2(E , s) does
not vanish on the line Re(s) = 1.

Remark A.1. Tate’s conjecture is known for rational elliptic surfaces. An elliptic surface E : y2 = x3 +
A(T )x + B(T ) is rational if and only if one of the following is true:

(1) 0 < max{3degA,2degB} < 12;
(2) 3degA = 2degB = 12 and ordT =0T 12�(T −1) = 0.

See [RSi], pp. 46–47 for more details.

ABC Conjecture. Fix ε > 0. For co-prime positive integers a, b and c with c = a+b and N(a,b, c) = ∏
p|abc p,

c �ε N(a,b, c)1+ε .

The full strength of ABC is never needed; rather, we need a consequence of ABC, the Square-Free
Sieve Conjecture (see [Gr]):

Square-Free Sieve Conjecture. Fix an irreducible polynomial f (t) of degree at least 4. As N → ∞, the num-
ber of t ∈ [N,2N] with f (t) divisible by p2 for some p > log N is o(N).

For irreducible polynomials of degree at most 3, the above is known, complete with a better error
than o(N) [Ho, Chapter 4].

We use the Square-Free Sieve to handle the variations in the conductors. If our evaluation of the
logarithm of the conductors is off by as little as a small constant, the prime sums become untractable.
This is why many works normalize by the average log-conductor.

The following conjecture is used only to interpret some of our results (unless we are calculating
the 2-level density to distinguish the three orthogonal candidate groups).

Restricted Sign Conjecture (for the family F ). Consider a one-parameter family F of elliptic curves. As
N → ∞, the signs of the curves Et are equidistributed for t ∈ [N,2N].

The Restricted Sign Conjecture can fail (there are families with constant j(Et) where all curves
have the same sign, as well as more exotic examples). Helfgott [He] has related the Restricted Sign
Conjecture to the Square-Free Sieve Conjecture and standard conjectures on sums of Moebius:
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Polynomial Moebius conjecture. Let f (t) be a non-constant polynomial such that no fixed square divides
f (t) for all t. Then

∑2N
t=N μ( f (t)) = o(N).

The Polynomial Moebius conjecture is known for linear f (t).
Helfgott shows the square-free sieve and polynomial Moebius imply the Restricted Sign Conjecture

for many families; this is also discussed in [Mil1]. More precisely, let M(t) be the product of the
irreducible polynomials dividing �(t) and not c4(t).

Theorem (Equidistribution of sign in a family). (See [He].) Let F be a one-parameter family with ai(t) ∈ Z[t].
If j(Et) and M(t) are non-constant, then the signs of Et , t ∈ [N,2N], are equidistributed as N → ∞. Further, if
we restrict to good t, t ∈ [N,2N] such that D(t) is good (usually square-free), the signs are still equidistributed
in the limit.

Supplementary material

The online version of this article contains additional supplementary material. Please visit
doi:10.1016/j.jnt.2010.04.002.
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