317 research outputs found

    Six-dimensional Supergravity and Projective Superfields

    Full text link
    We propose a superspace formulation of N=(1,0) conformal supergravity in six dimensions. The corresponding superspace constraints are invariant under super-Weyl transformations generated by a real scalar parameter. The known variant Weyl super-multiplet is recovered by coupling the geometry to a super-3-form tensor multiplet. Isotwistor variables are introduced and used to define projective superfields. We formulate a locally supersymmetric and super-Weyl invariant action principle in projective superspace. Some families of dynamical supergravity-matter systems are presented.Comment: 39 pages; v3: some modifications in section 2; equations (2.3), (2.14b), (2.16) and (2.17) correcte

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle

    Get PDF
    The main characteristic of an agent is acting on behalf of humans. Then, agents are employed as modeling paradigms for complex systems and their implementation. Today we are witnessing a growing increase in systems complexity, mainly when the presence of human beings and their interactions with the system introduces a dynamic variable not easily manageable during design phases. Design and implementation of this type of systems highlight the problem of making the system able to decide in autonomy. In this work we propose an implementation, based on Jason, of a cognitive architecture whose modules allow structuring the decision-making process by the internal states of the agents, thus combining aspects of self-modeling and theory of the min

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Clinical significance of genetic aberrations in secondary acute myeloid leukemia

    Get PDF
    The study aimed to identify genetic lesions associated with secondary acute myeloid leukemia (sAML) in comparison with AML arising de novo (dnAML) and assess their impact on patients' overall survival (OS). High-resolution genotyping and loss of heterozygosity mapping was performed on DNA samples from 86 sAML and 117 dnAML patients, using Affymetrix Genome-Wide Human SNP 6.0 arrays. Genes TP53, RUNX1, CBL, IDH1/2, NRAS, NPM1, and FLT3 were analyzed for mutations in all patients. We identified 36 recurrent cytogenetic aberrations (more than five events). Mutations in TP53, 9pUPD, and del7q (targeting CUX1 locus) were significantly associated with sAML, while NPM1 and FLT3 mutations associated with dnAML. Patients with sAML carrying TP53 mutations demonstrated lower 1-year OS rate than those with wild-type TP53 (14.3% +/- 9.4% vs. 35.4% +/- 7.2%; P = 0.002), while complex karyotype, del7q (CUX1) and del7p (IKZF1) showed no significant effect on OS. Multivariate analysis confirmed that mutant TP53 was the only independent adverse prognostic factor for OS in sAML (hazard ratio 2.67; 95% CI: 1.335.37; P = 0.006). Patients with dnAML and complex karyotype carried sAML-associated defects (TP53 defects in 54.5%, deletions targeting FOXP1 and ETV6 loci in 45.4% of the cases). We identified several co-occurring lesions associated with either sAML or dnAML diagnosis. Our data suggest that distinct genetic lesions drive leukemogenesis in sAML. High karyotype complexity of sAML patients does not influence OS. Somatic mutations in TP53 are the only independent adverse prognostic factor in sAML. Patients with dnAML and complex karyotype show genetic features associated with sAML and myeloproliferative neoplasms. Am. J. Hematol., 2012

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
    corecore