120 research outputs found

    Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Get PDF
    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! A lowcost, portable, and end-to-end photovoltaic-system test appropriate for NASA's new generation of Class D missions is presented. High risk, low-cost, and quick-turn satellites rarely have the resources to execute the traditional approaches from higher-class (A-C) missions. The Class D approach, as demonstrated on the Lunar Atmospheric and Dust Environment Explorer (LADEE), utilizes a portable, metalhalide, theatre lamp for an end-to-end photovoltaic system test. While not as precise and comprehensive as the traditional Large Area Pulsed Solar Simulator (LAPSS) test, the LADEE method leverages minimal resources into an ongoing assessment program that can be applied through numerous stages of the mission. The project takes a true Class D approach in assessing the technical value of a costly, highfidelity performance test versus a simpler approach with less programmatic risk. The resources required are a fraction of that for a LAPSS test, and is easy to repeat due to its portability. Further, the test equipment can be handed down to future projects without building an on-site facility. At the vanguard of Class D missions, the LADEE team frequently wrestled with and challenged the status quo. The philosophy of risk avoidance at all cost, typical to Class A-C missions, simply could not be executed. This innovative and simple testing solution is contextualized to NASA Class D programs and a specific risk encountered during development of the LADEE Electrical Power System (EPS). Selection of the appropriate lamp and safety concerns are discussed, with examples of test results. Combined with the vendor's panellevel data and periodic inspection, the method ensures system integrity from Integration and Test (I&T) through launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of available data

    Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Get PDF
    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current at the appropriate solar array switch in the power system. A metal-halide bulb, infrared imagers, and onboard spacecraft measurements are utilized to minimize risk of thermal damage during test. Data is provided to support test results for both passing and marginal panels. Prior to encapsulation in the launch vehicle, each panel is inspected for damage by the panel manufacturer. Cracked cells or other damage is amended on-site. Because the photovoltaic test system is inexpensive and portable, each repaired panel can be re-verified immediately. Post-launch, the photovoltaic system is again characterized for per-panel deviations from the manufacturer's performance test. This proved especially tricky as the LADEE spacecraft performs only one current measurement on the entire array. The algorithm for Matlab tools to assess panel performance based on spacecraft attitude is discussed. While not as precise and comprehensive as LAPSS, the LADEE approach leverages minimal resources into an ongoing assessment program that can be applied through numerous stages of the mission. The project takes a true Class D approach in assessing the technical value of a spacecraft level performance test versus the programmatic risk of shipping the spacecraft to another facility. The resources required are a fraction of that for a LAPSS test, and is easy to repeat. Further, the test equipment can be handed down to future projects without building an on-site facility

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    The Circadian Deadenylase Nocturnin Is Necessary for Stabilization of the iNOS mRNA in Mice

    Get PDF
    Nocturnin is a member of the CCR4 deadenylase family, and its expression is under circadian control with peak levels at night. Because it can remove poly(A) tails from mRNAs, it is presumed to play a role in post-transcriptional control of circadian gene expression, but its target mRNAs are not known. Here we demonstrate that Nocturnin expression is acutely induced by the endotoxin lipopolysaccharide (LPS). Mouse embryo fibroblasts (MEFs) lacking Nocturnin exhibit normal patterns of acute induction of TNFα and iNOS mRNAs during the first three hours following LPS treatment, but by 24 hours, while TNFα mRNA levels are indistinguishable from WT cells, iNOS message is significantly reduced 20-fold. Accordingly, analysis of the stability of the mRNAs showed that loss of Nocturnin causes a significant decrease in the half-life of the iNOS mRNA (t1/2 = 3.3 hours in Nocturnin knockout MEFs vs. 12.4 hours in wild type MEFs), while having no effect on the TNFα message. Furthermore, mice lacking Nocturnin lose the normal nighttime peak of hepatic iNOS mRNA, and have improved survival following LPS injection. These data suggest that Nocturnin has a novel stabilizing activity that plays an important role in the circadian response to inflammatory signals

    Cold-adapted RTX lipase from antarctic Pseudomonas sp. strain AMS8: isolation, molecular modeling and heterologous expression

    Get PDF
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S207, D 255 and H313, based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 C and retained almost 50 % of its activity at 10 C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5

    Psychological and weight-related characteristics of patients with anorexia nervosa-restricting type who later develop bulimia nervosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with anorexia nervosa-restricting type (AN-R) sometimes develop accompanying bulimic symptoms or the full syndrome of bulimia nervosa (BN). If clinicians could predict who might change into the bulimic sub-type or BN, preventative steps could be taken. Therefore, we investigated anthropometric and psychological factors possibly associated with such changes.</p> <p>Method</p> <p>All participants were from a study by the Japanese Genetic Research Group for Eating Disorders. Of 80 patients initially diagnosed with AN-R, 22 changed to the AN-Binge Eating/Purging Type (AN-BP) and 14 to BN for some period of time. The remaining 44 patients remained AN-R only from the onset to the investigation period. Variables compared by ANOVA included anthropometric measures, personality traits such as Multiple Perfectionism Scale scores and Temperament and Character Inventory scores, and Beck Depression Inventory-II scores.</p> <p>Results</p> <p>In comparison with AN-R only patients, those who developed BN had significantly higher current BMI (p < 0.05) and maximum BMI in the past (p < 0.05). They also scored significantly higher for the psychological characteristic of parental criticism (p < 0.05) and lower in self-directedness (p < 0.05), which confirms previous reports, but these differences disappeared when the depression score was used as a co-variant. No significant differences were obtained for personality traits or depression among the AN-R only patients irrespective of their duration of illness.</p> <p>Conclusion</p> <p>The present findings suggest a tendency toward obesity among patients who cross over from AN-R to BN. Low self-directedness and high parental criticism may be associated with the development of BN by patients with AN-R, although the differences may also be associated with depression.</p

    Cyanobacterial Diversity and a New Acaryochloris-Like Symbiont from Bahamian Sea-Squirts

    Get PDF
    Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S–23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Genetic instability in the tumor microenvironment: a new look at an old neighbor

    Get PDF

    The effect of microbial challenge on the intestinal proteome of broiler chickens

    Get PDF
    Background: In poultry production intestinal health and function is paramount to achieving efficient feed utilisation and growth. Uncovering the localised molecular mechanisms that occur during the early and important periods of growth that allow birds to grow optimally is important for this species. The exposure of young chicks to used litter from older flocks, containing mixed microbial populations, is a widely utilised model in poultry research. It rarely causes mortality but effects an immunogenic stimulation sufficient enough to cause reduced and uneven growth that is reflective of a challenging growing environment. Methods: A mixed microbial challenge was delivered as used litter containing Campylobacter jejuni and coccidial oocysts to 120 male Ross 308 broiler chicks, randomly divided into two groups: control and challenged. On day 12, 15, 18 and 22 (pre- and 3, 6 and 10 days post-addition of the used litter) the proximal jejunum was recovered from 6 replicates per group and differentially abundant proteins identified between groups and over time using 2D DiGE. Results: The abundance of cytoskeletal proteins of the chicken small intestinal proteome, particularly actin and actin associated proteins, increased over time in both challenged and control birds. Villin-1, an actin associated anti-apoptotic protein, was reduced in abundance in the challenged birds indicating that many of the changes in cytoskeletal protein abundance in the challenged birds were as a result of an increased rate of apoptosis. A number of heat shock proteins decreased in abundance over time in the intestine and this was more pronounced in the challenged birds. Conclusions: The small intestinal proteome sampled from 12 to 22 days of age showed considerable developmental change, comparable to other species indicating that many of the changes in protein abundance in the small intestine are conserved among vertebrates. Identifying and distinguishing the changes in proteins abundance and molecular pathways that occur as a result of normal growth from those that occur as a result of a challenging microbial environment is important in this major food producing animal
    corecore