130 research outputs found

    Generalized Relativistic Magnetohydrodynamic Equations for Pair and Electron-Ion Plasmas

    Full text link
    We derived one-fluid equations based on a relativistic two-fluid approximation of e±^\pm pair plasma and electron-ion plasma to reveal the specific relativistic nature of their behavior. Assuming simple condition on the relativistic one-fluid equations, we propose generalized relativistic magnetohydrodynamic (RMHD) equations which satisfy causality. We show the linear analyses of these equations regarding various plasma waves to show the validity of the generalized RMHD equations derived here and to reveal the distinct properties of the pair plasma and electron-ion plasma. The distinct properties relate to (i) the inertia effect of electric charge, (ii) the momentum of electric current, (iii) the relativistic Hall effect, (iv) the thermal electromotive force, and (v) the thermalized energy exchange between the two fluids. Using the generalized RMHD equations, we also clarify the condition that we can use standard RMHD equations and that we need the distinct RMHD equations of pair and electron-ion plasmas. The standard RMHD is available only when the relative velocity of the two fluids is nonrelativistic, a difference of the enthalpy densities of the two fluids is much smaller than the total enthalpy density, and the above distinct properties of the pair/electron-ion plasma are negligible. We discuss a general relativistic version of the equations applicable to the pair and electron-ion plasmas in black hole magnetospheres. We find the effective resistivity due to shear of frame ragging around a rotating black hole.Comment: Comments: 34 pages, 1 figures, The Astrophysical Journal, in pres

    Lifestyle carbon footprints and changes in lifestyles to limit global warming to 1.5 °C, and ways forward for related research

    Get PDF
    This paper presents an approach for assessing lifestyle carbon footprints and lifestyle change options aimed at achieving the 1.5 °C climate goal and facilitating the transition to decarbonized lifestyles through stakeholder participatory research. Using data on Finland and Japan it shows potential impacts of reducing carbon footprints through changes in lifestyles for around 30 options covering food, housing, and mobility domains, in comparison with the 2030 and 2050 per-capita targets (2.5-3.2 tCO2e by 2030; 0.7-1.4 tCO2e by 2050). It discusses research opportunities for expanding the footprint-based quantitative analysis to incorporate subnational analysis, living lab, and scenario development aiming at advancing sustainability science on the transition to decarbonized lifestyles

    Equation of State in Relativistic Magnetohydrodynamics: variable versus constant adiabatic index

    Get PDF
    The role of the equation of state for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ\Gamma-law equation of state, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic equation of state that better approximates the single-specie relativistic gas. The paper focus on three different topics. First, the influence of a more realistic equation of state on the propagation of fast magneto-sonic shocks is investigated. This calls into question the validity of the constant Γ\Gamma-law equation of state in problems where the temperature of the gas substantially changes across hydromagnetic waves. Second, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general equation of state and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic equation of state can considerably bear upon the solution when transitions from cold to hot gas (or viceversa) are present. Under these circumstances, a polytropic equation of state can significantly endanger the solution.Comment: 14 pages, 14 figure

    An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics

    Get PDF
    A third order shock-capturing numerical scheme for three-dimensional special relativistic magnetohydrodynamics (3-D RMHD) is presented and validated against several numerical tests. The simple and efficient central scheme described in Paper I (Del Zanna and Bucciantini, Astron. Astrophys., 390, 1177--1186, 2002) for relativistic hydrodynamics is here extended to the magnetic case by following the strategies prescribed for classical MHD by Londrillo and Del Zanna (Astrophys. J., 530, 508--524, 2000). The scheme avoids completely spectral decomposition into characteristic waves, computationally expensive and subject to many degenerate cases in the magnetic case, while it makes use of a two-speed Riemann solver that just require the knowledge of the two local fast magnetosonic velocities. Moreover, the onset of spurious magnetic monopoles, which is a typical problem for multi-dimensional MHD upwind codes, is prevented by properly taking into account the solenoidal constraint and the specific antisymmetric nature of the induction equation. Finally, the extension to generalized orthogonal curvilinear coordinate systems is included, thus the scheme is ready to incorporate general relativistic (GRMHD) effects.Comment: 18 pages, Latex, 8 Encapsulated PostScript figures, accepted for publication in A&

    The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion

    Full text link
    The Fermi Gamma-Ray Space Telescope reveals two large bubbles in the Galaxy, which extend nearly symmetrically ~50° above and below the Galactic center. Using three-dimensional (3D) magnetohydrodynamic simulations that self-consistently include the dynamical interaction between cosmic rays (CRs) and thermal gas and anisotropic CR diffusion along the magnetic field lines, we show that the key characteristics of the observed gamma-ray bubbles and the spatially correlated X-ray features in the ROSAT 1.5 keV map can be successfully reproduced by recent jet activity from the central active galactic nucleus. We find that after taking into account the projection of the 3D bubbles onto the sky the physical heights of the bubbles can be much smaller than previously thought, greatly reducing the formation time of the bubbles to about a Myr. This relatively small bubble age is needed to reconcile the simulations with the upper limit of bubble ages estimated from the cooling time of high-energy electrons. No additional physical mechanisms are required to suppress large-scale hydrodynamic instabilities because the evolution time is too short for them to develop. The simulated CR bubbles are edge-brightened, which is consistent with the observed projected flat surface brightness distribution. Furthermore, we demonstrate that the sharp edges of the observed bubbles can be due to anisotropic CR diffusion along magnetic field lines that drape around the bubbles during their supersonic expansion, with suppressed perpendicular diffusion across the bubble surface. Possible causes of the slight bends of the Fermi bubbles to the west are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98587/1/0004-637X_761_2_185.pd

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link

    Assessment of Policy Integration of Sustainable Consumption and Production into National Policies

    Get PDF
    Sustainable Consumption and Production (SCP) was adopted as a stand-alone goal and reflected as one of the cross-cutting objectives of the Sustainable Development Goals (SDGs), with a central role to address global resource consumption and its associated environmental impacts, as well as numerous social and economic issues. With this broad characterization of SCP, policy integration is crucial in addressing it at national level. This paper analyzes characteristics of SCP policy integration based on a survey of national government policies. It reveals that SCP is not fully integrated in national policy-making; high resource consumption sectors such as urban planning, building, and tourism are not fully incorporated into national SCP policies, and there is only limited participation of relevant government ministries other than environment ministries. We find that among countries with horizontal policy integration, those with Green Economy/Green Growth frameworks tend to have better sectoral integration; and those with SCP-specific frameworks are likely to have broader coordination of ministries. By conducting cross-analysis using income level and region, the different characteristics of SCP policy-making approaches were identified. The results of this study provide a better understanding of how SCP is integrated into policy for effective national policy-making and measurement of the SDG Goal 12.Peer reviewe
    • …
    corecore