31 research outputs found

    Variation in Meiotic Recombination Frequencies Between Allelic Transgenes Inserted at Different Sites in the Drosophila melanogaster Genome

    Get PDF
    Meiotic crossovers are distributed nonrandomly across the genome. Classic studies in Drosophila suggest that the position of a gene along a chromosome arm can affect the outcome of the recombination process, with proximity to the centromere being associated with lower crossing over. To examine this phenomenon molecularly, we developed an assay that measures meiotic crossovers and noncrossover gene conversions between allelic transgenes inserted into different genomic positions. To facilitate collecting a large number of virgin females, we developed a useful genetic system that kills males and undesired classes of females. We found that the recombination frequency at a site in the middle of the X chromosome, where crossovers are normally frequent, was similar to the frequency at the centromere-proximal end of the euchromatin, where crossovers are normally infrequent. In contrast, we recovered no recombinantsā€”crossovers or noncrossoversā€”at a site on chromosome 4 and at a site toward the distal end of the X chromosome. These results suggest that local sequence or chromatin features have a stronger impact on recombination rates in this transgene assay than position along the chromosome arm

    Bloom Syndrome Helicase Promotes Meiotic Crossover Patterning and Homolog Disjunction

    Get PDF
    In most sexually reproducing organisms, crossover formation between homologous chromosomes is necessary for proper chromosome disjunction during meiosis I. During meiotic recombination, a subset of programmed DNA double-strand breaks (DSBs) are repaired as crossovers, with the remainder becoming noncrossovers [1]. Whether a repair intermediate is designated to become a crossover is a highly regulated decision that integrates several crossover patterning processes, both along chromosome arms (interference and the centromere effect) and between chromosomes (crossover assurance) [2]. Because the mechanisms that generate crossover patterning have remained elusive for over a century, it has been difficult to assess the relationship between crossover patterning and meiotic chromosome behavior. We show here that meiotic crossover patterning is lost in Drosophila melanogaster mutants that lack the Bloom syndrome helicase. In the absence of interference and the centromere effect, crossovers are distributed more uniformly along chromosomes. Crossovers even occur on the small chromosome 4, which normally never has meiotic crossovers [3]. Regulated distribution of crossovers between chromosome pairs is also lost, resulting inĀ an elevated frequency of homologs that do not receive a crossover, which in turn leads to elevated nondisjunction

    Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination

    Get PDF
    DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the novel MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts

    Sources and Structures of Mitotic Crossovers That Arise When BLM Helicase Is Absent in Drosophila

    Get PDF
    The Bloom syndrome helicase, BLM, has numerous functions that prevent mitotic crossovers. We used unique features of Drosophila melanogaster to investigate origins and properties of mitotic crossovers that occur when BLM is absent. Induction of lesions that block replication forks increased crossover frequencies, consistent with functions for BLM in responding to fork blockage. In contrast, treatment with hydroxyurea, which stalls forks, did not elevate crossovers, even though mutants lacking BLM are sensitive to killing by this agent. To learn about sources of spontaneous recombination, we mapped mitotic crossovers in mutants lacking BLM. In the male germline, irradiation-induced crossovers were distributed randomly across the euchromatin, but spontaneous crossovers were nonrandom. We suggest that regions of the genome with a high frequency of mitotic crossovers may be analogous to common fragile sites in the human genome. Interestingly, in the male germline there is a paucity of crossovers in the interval that spans the pericentric heterochromatin, but in the female germline this interval is more prone to crossing over. Finally, our system allowed us to recover pairs of reciprocal crossover chromosomes. Sequencing of these revealed the existence of gene conversion tracts and did not provide any evidence for mutations associated with crossovers. These findings provide important new insights into sources and structures of mitotic crossovers and functions of BLM helicase

    A Germline Clone Screen on the X Chromosome Reveals Novel Meiotic Mutants in Drosophila melanogaster

    Get PDF
    In an effort to isolate novel meiotic mutants that are severely defective in chromosome segregation and/or exchange, we employed a germline clone screen of the X chromosome of Drosophila melanogaster. We screened over 120,000 EMS-mutagenized chromosomes and isolated 19 mutants, which comprised nine complementation groups. Four of these complementation groups mapped to known meiotic genes, including mei-217, mei-218, mei-9, and nod. Importantly, we have identified two novel complementation groups with strong meiotic phenotypes, as assayed by X chromosome nondisjunction. One complementation group is defined by three alleles, and the second novel complementation group is defined by a single allele. All 19 mutants are homozygous viable, fertile, and fully recessive. Of the 9 mutants that have been molecularly characterized, 5 are canonical EMS-induced transitions, and the remaining 4 are transversions. In sum, we have identified two new genes that are defined by novel meiotic mutants, in addition to isolating new alleles of mei-217, mei-218, mei-9, and nod

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Small-quantity lipid-based nutrient supplements for children age 6-24 months: a systematic review and individual participant data meta-analysis of effects on developmental outcomes and effect modifiers

    Get PDF
    BACKGROUND: Small-quantity (SQ) lipid-based nutrient supplements (LNSs) provide many nutrients needed for brain development. OBJECTIVES: We aimed to generate pooled estimates of the effect of SQ-LNSs on developmental outcomes (language, social-emotional, motor, and executive function), and to identify study-level and individual-level modifiers of these effects. METHODS: We conducted a 2-stage meta-analysis of individual participant data from 14 intervention against control group comparisons in 13 randomized trials of SQ-LNSs provided to children age 6-24 mo (total nĀ =Ā 30,024). RESULTS: In 11-13 intervention against control group comparisons (nĀ =Ā 23,588-24,561), SQ-LNSs increased mean language (mean difference: 0.07 SD; 95% CI: 0.04, 0.10 SD), social-emotional (0.08; 0.05, 0.11 SD), and motor scores (0.08; 95% CI: 0.05, 0.11 SD) and reduced the prevalence of children in the lowest decile of these scores by 16% (prevalence ratio: 0.84; 95% CI: 0.76, 0.92), 19% (0.81; 95% CI: 0.74, 0.89), and 16% (0.84; 95% CI: 0.76, 0.92), respectively. SQ-LNSs also increased the prevalence of children walking without support at 12 mo by 9% (1.09; 95% CI: 1.05, 1.14). Effects of SQ-LNSs on language, social-emotional, and motor outcomes were larger among study populations with a higher stunting burden (ā‰„35%) (mean difference: 0.11-0.13 SD; 8-9 comparisons). At the individual level, greater effects of SQ-LNSs were found on language among children who were acutely malnourished (mean difference: 0.31) at baseline; on language (0.12), motor (0.11), and executive function (0.06) among children in households with lower socioeconomic status; and on motor development among later-born children (0.11), children of older mothers (0.10), and children of mothers with lower education (0.11). CONCLUSIONS: Child SQ-LNSs can be expected to result in modest developmental gains, which would be analogous to 1-1.5 IQ points on an IQ test, particularly in populations with a high child stunting burden. Certain groups of children who experience higher-risk environments have greater potential to benefit from SQ-LNSs in developmental outcomes.This trial was registered at www.crd.york.ac.uk/PROSPERO as CRD42020159971

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessmentā€”(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learningā€”along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate studentsā€™ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7Ā·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0Ā·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91Ā·4%), moxifloxacin (91Ā·6%) and ethambutol (93Ā·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Data from: Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature-associated plastic recombination

    No full text
    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. The frequency of recombination in the model system Drosophila melanogaster has long been known to exhibit phenotypic plasticity in response to temperature. Here were use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate in response to temperature. In contrast to expectation, we find no evidence for enhanced plasticity in recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct
    corecore