5,906 research outputs found
Sanctuary in the City of Brotherly Love: Probing the Effectiveness and Broader Implications of Philadelphia’s Sanctuary City Policies
Amidst the already fraught politics of immigration, “sanctuary” policies, whereby state and local law enforcement agencies limit their cooperation with federal immigration enforcement authorities to varying degrees, have emerged as a particularly contentious issue. This paper sifts past the political vitriol surrounding the issue of “sanctuary” and uses original survey research in Philadelphia to answer a straightforward question: Are these policies working? That is, are the city of Philadelphia’s sanctuary policies actually building trust between its undocumented residents and local law enforcement, thereby laying the groundwork for higher rates of crime reporting and safer communities? My results from a survey (with a telling embedded treatment effect experiment) of undocumented Philadelphians indicates that the city’s sanctuary policies are in fact serving their intended objectives. When coupled with the recent debates in the state legislature surrounding the issue of “sanctuary,” my results beg difficult questions regarding the development of American federalism and the proper division of authority between states and municipalities
Electrocorticographic Activation Patterns of Electroencephalographic Microstates.
Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates
A safe method of extracting DNA from Coccidioides immitis
Human-pathogenic fungi such as Coccidioides immitis and Histoplasma capsulatum must be handled in Biosafety level 3 containment facilities which make for a very awkward working environment (J.Y. Richmond and R.W. McKinney, eds. Biosafety in Microbiological and Biomedical Laboratories, 3rd ed. NIH, Washington). In this paper we describe a safe and convenient method of extracting DNA from such fungi in which the culture is killed by steaming, allowing removal from the containment facilities, as soon as possible. The method was first developed with the non-pathogen Neurospora crassa, has worked well for both C. immitis and H. capsulatum, and should be useful for extracting DNA from any pathogenic fungus
Recommended from our members
Automated Measurement of Spatially Resolved Hair-Hair Single Fiber Adhesion.
The adhesion force between individual human hair fibers in a crosshair geometry was measured by observing their natural bending and adhesive jumps out of contact, using optical video microscopy. The hair fibers' natural elastic responses, calibrated by measuring their natural resonant frequencies, were used to measure the forces. Using a custom-designed, automated apparatus to measure thousands of individual hair-hair contacts along millimeter length scales of hair, it was found that a broad, yet characteristic, spatially variant distribution in adhesion force is measured on the 1 to 1000 nN scale for both clean and conditioner-treated hair fibers. Comparison between the measured adhesion forces and adhesion forces modeled from the hairs' surface topography (measured using confocal laser profilometry) shows they have a good order-of-magnitude agreement and have similar breadth and shape. The agreement between the measurements and the model suggests, perhaps unsurprisingly, that hair-hair adhesion is governed, to a first approximation, by the unique surface structure of the hairs' cuticles and, therefore, the large distribution in local mean curvature at the various individual contact points along the hairs' lengths. We posit that haircare products could best control the surface properties (or at least the adhesive properties) between hairs by directly modifying the hair surface microstructure
Production of Acquired Immunodeficiency Syndrome-Associated Retrovirus in Human and Nonhuman Cells Transfected with an Infectious Molecular Clone
We constructed an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified
Medical Treatment of Radiological Casualties: Current Concepts
The threat of radiologic or nuclear terrorism is increasing, yet many physicians are unfamiliar with basic treatment principles for radiologic casualties. Patients may present for care after a covert radiation exposure, requiring an elevated level of suspicion by the physician. Traditional medical and surgical triage criteria should always take precedence over radiation exposure management or decontamination. External contamination from a radioactive cloud is easily evaluated using a simple Geiger-Müller counter and decontamination accomplished by prompt removal of clothing and traditional showering. Management of surgical conditions in the presence of persistent radioactive contamination should be dealt with in a conventional manner with health physics guidance. To be most effective in the medical management of a terrorist event involving high-level radiation, physicians should understand basic manifestations of the acute radiation syndrome, the available medical countermeasures, and the psychosocial implications of radiation incidents. Health policy considerations include stockpiling strategies, effective use of risk communications, and decisionmaking for shelter-in-place versus evacuation after a radiologic incident
A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images
Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com
Iodine chemistry in the chemistry-climate model SOCOL-AERv2-I
In this paper, we present a new version of the chemistry-climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3ĝ€¯%-4ĝ€¯% reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30ĝ€¯ppbv less ozone at low latitudes and up to 100ĝ€¯ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5ĝ€¯%-10ĝ€¯% depending on geographical location. In the lower troposphere, 75ĝ€¯% of the modeled ozone reduction originates from inorganic sources of iodine, 25ĝ€¯% from organic sources of iodine. At 50ĝ€¯hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5ĝ€¯%-2.5ĝ€¯%. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.Fil: Karagodin Doyennel, Arseniy. The Institute for Atmospheric and Climate Science; Suiza. Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center; SuizaFil: Rozanov, Eugene. The Institute for Atmospheric and Climate Science; Suiza. Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center; Suiza. Saint Petersburg State University; RusiaFil: Sukhodolov, Timofei. Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center; Suiza. Saint Petersburg State University; Rusia. University of Natural Resources and Life Sciences; AustriaFil: Egorova, Tatiana. Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center; SuizaFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Sherwen, Tomás. University of York; Reino UnidoFil: Volkamer, Rainer. The Institute for Atmospheric and Climate Science ; Suiza. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados Unidos. Paul Scherrer Institute; SuizaFil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Giroud, Tanguy. The Institute for Atmospheric and Climate Science; SuizaFil: Peter, Thomas. The Institute for Atmospheric and Climate Science; Suiz
Pulmonary Effects of Indoor- and Outdoor-Generated Particles in Children with Asthma
Most particulate matter (PM) health effects studies use outdoor (ambient) PM as a surrogate for personal exposure. However, people spend most of their time indoors exposed to a combination of indoor-generated particles and ambient particles that have infiltrated. Thus, it is important to investigate the differential health effects of indoor- and ambient-generated particles. We combined our recently adapted recursive model and a predictive model for estimating infiltration efficiency to separate personal exposure (E) to PM(2.5) (PM with aerodynamic diameter ≤2.5 μm) into its indoor-generated (E(ig)) and ambient-generated (E(ag)) components for 19 children with asthma. We then compared E(ig) and E(ag) to changes in exhaled nitric oxide (eNO), a marker of airway inflammation. Based on the recursive model with a sample size of eight children, E(ag) was marginally associated with increases in eNO [5.6 ppb per 10-μg/m(3) increase in PM(2.5); 95% confidence interval (CI), −0.6 to 11.9; p = 0.08]. E(ig) was not associated with eNO (−0.19 ppb change per 10μg/m(3)). Our predictive model allowed us to estimate E(ag) and E(ig) for all 19 children. For those combined estimates, only E(ag) was significantly associated with an increase in eNO (E(ag): 5.0 ppb per 10-μg/m(3) increase in PM(2.5;) 95% CI, 0.3 to 9.7; p = 0.04; E(ig): 3.3 ppb per 10-μg/m(3) increase in PM(2.5); 95% CI, −1.1 to 7.7; p = 0.15). Effects were seen only in children who were not using corticosteroid therapy. We conclude that the ambient-generated component of PM(2.5) exposure is consistently associated with increases in eNO and the indoor-generated component is less strongly associated with eNO
Applying human factors methods to explore ‘Work as Imagined’ and ‘Work as Done’ in the Emergency Department’s response to chemical, biological, radiological, and nuclear events
The Emergency Department (ED) is a complex, hectic, and high-pressured environment.
Chemical, Biological, Radiological, and Nuclear (CBRN) events are multi-faceted emergencies and present numerous challenges to ED staff (first receivers) with large scale trauma, consequently requiring a combination of complex responses.
Human Factors and Ergonomics (HF/E) methods such as Hierarchical Task Analysis (HTA) have been used in healthcare research. However, HF/E methods and theory have not been combined to understand how the ED responds to CBRN events.
This study aimed to compare Work as Imagined (WAI) and Work as Done (WAD) in the ED CBRN response in a UK based hospital. WAI was established by carrying out document analyses on a CBRN plan and WAD by exploring
first receivers response to CBRN scenario cards. The responses were converted to HTAs and compared. The WAI HTAs showed 4-8 phases of general organizational responsibilities
during a CBRN event. WAD HTAs placed emphasis on diagnosing and treating
presenting conditions. A comparison of WAI and WAD HTAs highlighted common actions and tasks. This study has identified three key differences between WAI and WAD in the ED CBRN response: 1) documentation of the
CBRN event 2) treating the patient and 3) diagnosing the presenting complaint.
Findings from this study provide an evidence base which can be used to inform future clinical policy and practice in providing safe and high quality care during CBRN events in the ED
- …