60 research outputs found

    New materials and methods for studying macrophages at interfaces

    Get PDF
    Macrophages are a key cellular component of the immune system. In the body they act as front line immune defense and are vital chemical factories that respond to their environment by secreting various chemical mediators. A complete understanding of the molecular details of phagocytotic process and macrophages ability to modulate the signaling activity is still lacking. In the present thesis we designed and used novel nano-materials to understand and modulate macrophage behavior. In order to decipher the cell mechanics and signaling occurring during phagocytotic uptake, we used hollow polyelectrolyte capsules as force sensors. In order to enumerate the forces from the deformations, the capsules were calibrated and a stiffness of 0.11 ± 0.02 nN/nm was found. Using a swept field confocal microscope, we could follow the deformations occurring on the capsule during the phagocytotic uptake. This allowed us for the first time to decipher the mechanics of phagocytosis uptake in its natural state without applying any external mechanical forces or perturbing the cells. It was observed that macrophages during the retraction phase of the uptake, buckled or irreversibly deformed the capsules. From the mechanical characterization, we know that it takes 150 nN to buckle the capsules, this upper limit of the “PhagoSensor” approach is thirty fold higher than the values previously measured by other techniques. To systematically decipher the mechanistic roles of individual molecules in phagocytotic cup formation, we inhibited key signaling molecules PI3-Kinase and SYK, the eccentricity of the deformed capsules was found to be 0.87 ± 0.05 and 0.75 ± 0.05 respectively. This showed that the activation occurs in a sequence. In the second part of the thesis, new implant surfaces were designed for people having a propensity for chronic inflammation. These engineered surfaces can modulate and make macrophages secrete anti-inflammation cytokines. The surfaces comprised of nanopatterned substrates with regular hexagonal spacing of 36, 63, 80 and 125 nm, decorated with Fc fragments. There was a modulation in cell area and cytokine production on the nanopatterns. It was found that the Fc nanopatterns were superior in eliciting anti-inflammation response (TGF-ß & IL-10) than random presentation of Fc fragments. We found that the anti-inflammation effect starts after 24 hrs and at 48 hrs we could see reduced pro-inflammation. Comparing the pro- and anti-inflammatory cytokine production, it was concluded that 36 nm spaced patterns are ideal for eliciting cytokine mediated anti-inflammation signaling. To include both the beneficial effects of polymer surfaces and nanopatterning, a new protein nanopatterning approach for thermochemical nanolithography (TCNL) was developed. This technique can generate high-resolution, multi-protein patterns in arbitrary shapes on polymer substrates. TCNL uses a resistively heated AFM tip to unmask amine groups. We modified the micro and nano patterns generated to include different chemical functionalities and thereby allowing us to bind multiple proteins on the same substrate in different shapes. Several approaches have been developed to immobilize proteins and other biomolecules like DNA onto these templates. These templates are stable and can be stored for later bio-functionalization for at least 4-6 weeks. A strategy to prevent protein adsorption on the surfaces was developed. It was demonstrated that these passivated surfaces reduced the non-specific binding of proteins by approximately 20 times. Finally, the bioactivity of the patterned proteins was demonstrated using an in-vitro protein assay and in-vivo cell assay

    A Novel Disulfide-Rich Protein Motif from Avian Eggshell Membranes

    Get PDF
    Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM) has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP) that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X4-C-X5-C-X8-C-X6 pattern (where X represents intervening non-cysteine residues). These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata) and in the oviparous green anole lizard (Anolis carolinensis). In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern) from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact ESM fibers

    Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100

    Get PDF
    Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly

    Nonperturbative chemical modification of graphene for protein micropatterning

    No full text
    International audienceGraphene's extraordinary physical properties and its planar geometry make it an ideal candidate for a wide array of applications, many of which require controlled chemical modification and the spatial organization of molecules on its surface. In particular, the ability to functionalize and micropattern graphene with proteins is relevant to bioscience applications such as biomolecular sensors, single-cell sensors, and tissue engineering.Wereport a general strategy for the noncovalent chemical modification of epitaxial graphene for protein immobilization and micropatterning. We show that bifunctional molecule pyrenebutanoic acid-succinimidyl ester (PYR-NHS), composed of the hydrophobic pyrene and the reactive succinimide ester group, binds to graphene noncovalently but irreversibly. We investigate whether the chemical treatment perturbs the electronic band structure of graphene using X-ray photoemission (XPS) and Raman spectroscopy. Our results show that the sp2 hybridization remains intact and that the π band maintains its characteristic Lorentzian shape in the Raman spectra. The modified graphene surfaces, which bind specifically to amines in proteins, are micropatterned with arrays of fluorescently labeled proteins that are relevant to glucose sensors (glucose oxidase) and cell sensor and tissue engineering applications (laminin)

    Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding–stainless steel fume: Iron as a primary mediator versus chromium and nickel

    Get PDF
    In 2017, the International Agency for Research on Cancer classified welding fumes as “car- cinogenic to humans” (Group 1). Both mild steel (MS) welding, where fumes lack carcino- genic chromium and nickel, and stainless steel (SS) increase lung cancer risk in welders; therefore, further research to better understand the toxicity of the individual metals is needed. The objectives were to (1) compare the pulmonary toxicity of chromium (as Cr(III) oxide [Cr2O3] and Cr (VI) calcium chromate [CaCrO4]), nickel [II] oxide (NiO), iron [III] oxide (Fe2O3), and gas metal arc welding-SS (GMAW-SS) fume; and (2) determine if these metal oxides can promote lung tumors. Lung tumor susceptible A/J mice (male, 4–5 weeks old) were exposed by oropharyngeal aspiration to vehicle, GMAW-SS fume (1.7 mg), or a low or high dose of surrogate metal oxides based on the respective weight percent of each metal in the fume: Cr2O3 + CaCrO4 (366 + 5 ÎŒg and 731 + 11 ÎŒg), NiO (141 and 281 ÎŒg), or Fe2O3 (1 and 2 mg). Bronchoalveolar lavage, histopathology, and lung/liver qPCR were done at 1, 7, 28, and 84 days post-aspiration. In a two-stage lung carcinogenesis model, mice were initi- ated with 3-methylcholanthrene (10 ÎŒg/g; intraperitoneal; 1x) or corn oil then exposed to metal oxides or vehicle (1 x/week for 5 weeks) by oropharyngeal aspiration. Lung tumors were counted at 30 weeks post-initiation. Results indicate the inflammatory potential of the metal oxides was Fe2O3 \u3e Cr2O3 + CaCrO4 \u3e NiO. Overall, the pneumotoxic effects were negligible for NiO, acute but not persistent for Cr2O3 + CaCrO4, and persistent for the Fe2O3 exposures. Fe2O3, but not Cr2O3 + CaCrO4 or NiO significantly promoted lung tumors. These results provide experimental evidence that Fe2O3 is an important mediator of welding fume toxicity and support epidemiological findings and the IARC classification

    Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family

    Get PDF
    Background: Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size. Methods: Three sizes of graphite nanoplates [20 ÎŒm lateral (Gr20), 5 ÎŒm lateral (Gr5), and \u3c2 \u3eÎŒm lateral (Gr1)] ranging from 8–25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies. Mice were exposed by pharyngeal aspiration to these 3 sizes of graphite nanoplates at doses of 4 or 40 ÎŒg/mouse, or to carbon black (CB) as a carbonaceous control material. At 4 h, 1 day, 7 days, 1 month, and 2 months post-exposure, bronchoalveolar lavage was performed to collect fluid and cells for analysis of lung injury and inflammation. Particle clearance, histopathology and gene expression in lung tissue were evaluated. In addition, protein levels and gene expression were measured in blood, heart, aorta and liver to assess systemic responses. Results: All Gr samples were found to be similarly composed of two graphite structures and agglomerated to varying degrees in DM in proportion to the lateral dimension. Surface area for Gr1 was approximately 7-fold greater than Gr5 and Gr20, but was less reactive reactive per m2 . At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1. Conclusions: Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates \u3e 5 ÎŒm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1–2 ÎŒm graphite nanoplate

    Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in US facilities

    Get PDF
    Background Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 mu g/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. Results Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. Conclusion Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters

    Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation.

    Get PDF
    The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community. Nucleic Acids Res 2018 Jan 4; 46(D1):D221-D228

    Population genomics of the critically endangered kākāpƍ

    Get PDF
    Summary The kākāpƍ is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpƍ, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpƍ indicate that present-day island kākāpƍ have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∌10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpƍ breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species
    • 

    corecore