408 research outputs found

    Landslide Susceptibility Map of Johnson County, Kentucky

    Get PDF
    The purpose of this map is to identify landslide-prone areas in Johnson County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps

    Landslide Susceptibility Map of Martin County, Kentucky

    Get PDF
    The purpose of this map is to identify landslide-prone areas in Martin County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps

    Landslide Susceptibility Map of Floyd County, Kentucky

    Get PDF
    The purpose of this map is to identify landslide-prone areas in Floyd County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps

    Landslide Susceptibility Map of Pike County, Kentucky

    Get PDF
    The purpose of this map is to identify landslide-prone areas in Pike County in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps

    Landslide Susceptibility Map of Magoffin County, Kentucky

    Get PDF
    The purpose of this map is to identify landslide-prone areas in Magoffin County, Kentucky, in order to provide the public, as well as local and state government agencies, with information about where landslides are likely to occur. This map represents geomorphic-based susceptibility modeling that focuses on physical slope characteristics and morphology, the quality of which is dependent on data accuracy and resolution of terrain models. The availability of high-resolution (5-ft digital elevation model) lidar derived datasets allows for the generation of terrain elevation derivatives such as hillshades, slope, aspect, curvature, and roughness, as well as identification of existing landslide deposits. These high-resolution lidar derived datasets, coupled with landslide inventory mapping, enable us to produce detailed, high-resolution landslide susceptibility maps

    Reconnaissance of Landslides and Debris Flows Associated with the July 2022 Flooding in Eastern Kentucky

    Get PDF
    Between July 25 and July 30, 2022, a series of convective storms generated approximately 14–16 inches of rainfall across parts of eastern Kentucky, predominately in Clay, Leslie, Perry, Breathitt, Knott, and Letcher Counties. The peak rainfall occurred on the evening of July 27 and the morning of July 28, with the hardest-hit areas experiencing more than 10 inches in a 24-hour period. The historic rainfall led to catastrophic flooding along many rivers and streams, but also triggered widespread landslides and debris flows that damaged roads, homes, property, and other infrastructure. Once initial relief and recovery efforts were established, the Kentucky Geological Survey (KGS) geohazard section conducted a preliminary field reconnaissance that observed and documented landslides and debris flows triggered by the July storm event. We documented landslides from late August to early November 2022 using (1) visual field inspection methods and (2) a remote sensing technique called normalized differencing vegetation index (NDVI). Visual field inspection occurred primarily along roads through documentation of landslide type and location. The NDVI technique allowed identification of larger landslides and debris flows not easily accessible in a vehicle. We identified more than 1,000 new landslides and debris flows triggered by the July event. The majority of landslides the team identified were shallow translational slides, supplemented by some rotational slides (slumps), and debris flows. Documenting landslides in the field before they perish is important for future hazard assessment modeling. Landslide inventories associated with large storm events, and large impact areas, will improve our understanding of landslide occurrence and rainfall rates, and potentially our ability to forecast landslides. The data is intended for use by both scientists and non-scientists, such as emergency managers and public safety decision-makers

    A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals

    Get PDF
    Background India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called “Indo-Aryan invasions” from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. Results We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55–65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. Conclusions Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y-chromosome lineages, a smaller fraction of autosomal genome-wide variation and an even smaller fraction of mitogenomes across a vast swathe of Eurasia between 5 and 3.5 ka

    Spectrally-resolved UV photodesorption of CH4 in pure and layered ices

    Full text link
    Context. Methane is among the main components of the ice mantles of insterstellar dust grains, where it is at the start of a rich solid-phase chemical network. Quantification of the photon-induced desorption yield of these frozen molecules and understanding of the underlying processes is necessary to accurately model the observations and the chemical evolution of various regions of the interstellar medium. Aims. This study aims at experimentally determining absolute photodesorption yields for the CH4 molecule as a function of photon energy. The influence of the ice composition is also investigated. By studying the methane desorption from layered CH4:CO ice, indirect desorption processes triggered by the excitation of the CO molecules is monitored and quantified. Methods. Tunable monochromatic VUV light from the DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91 nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice samples. The release of species in the gas phase is monitored by quadrupole mass spectrometry and absolute photodesorption yields of intact CH4 are deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV (~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4, which confirms a desorption mechanism mediated by electronic transitions in the ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a pattern characteristic of CO absorption, indicating desorption induced by energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from the pure ice in various interstellar environments is around 2.0 x 10^-3 molecules per incident photon. Results on CO-induced indirect desorption of CH4 provide useful insights for the generalization of this process to other molecules co-existing with CO in ice mantles

    Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis

    Get PDF
    Mating behaviour is a fundamental aspect of the evolutionary ecology of sexually reproducing species, but one that has been under-researched in parasitic nematodes. We analysed mating behaviour in the parasitic nematode Trichostrongylus tenuis by performing a paternity analysis in a population from a single red grouse host. Paternity of the 150 larval offspring of 25 mothers (sampled from one of the two host caeca) was assigned among 294 candidate fathers (sampled from both caeca). Each candidate father's probability of paternity of each offspring was estimated from 10-locus microsatellite genotypes. Seventy-six (51%) offspring were assigned a father with a probability of >0.8, and the estimated number of unsampled males was 136 (95% credible interval (CI) 77-219). The probability of a male from one caecum fathering an offspring in the other caecum was estimated as 0.024 (95% CI 0.003-0.077), indicating that the junction of the caeca is a strong barrier to dispersal. Levels of promiscuity (defined as the probability of two of an adult's offspring sharing only one parent) were high for both sexes. Variance in male reproductive success was moderately high, possibly because of a combination of random mating and high variance in post-copulatory reproductive success. These results provide the first data on individual mating behaviour among parasitic nematodes
    corecore