1,226 research outputs found

    Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5

    Get PDF
    AbstractThe high costs of artificial pulmonary surfactants, ranging in hundreds per kilogram of body weight, used for treating the respiratory distress syndrome (RDS) premature babies have limited their applications. We have extensively studied soy lecithins and higher alcohols as lipid alternatives to expensive phospholipids such as DPPC and PG. As a substitute for the proteins, we have synthesized the peptide Hel 13-5D3 by introducing D-amino acids into a highly lipid-soluble, basic amphiphilic peptide, Hel 13-5, composed of 18 amino acid residues. Analysis of the surfactant activities of lipid-amphiphilic artificial peptide mixtures using lung-irrigated rat models revealed that a mixture (Murosurf SLPD3) of dehydrogenated soy lecithin, fractionated soy lecithin, palmitic acid (PA), and peptide Hel 13-5D3 (40:40:17.5:2.5, by weight) superior pulmonary surfactant activity than a commercially available pulmonary surfactant (beractant, Surfacten®). Experiments using ovalbumin-sensitized model animals revealed that the lipid-amphiphilic artificial peptide mixtures provided significant control over an increase in the pulmonary resistance induced by premature allergy reaction and reduced the number of acidocytes and neutrophils in lung-irrigated solution. The newly developed low-cost pulmonary surfactant system may be used for treatment of a wide variety of respiratory diseases

    The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Get PDF
    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models

    Observations of a pulse driven cool polar jet by SDO/AIA

    Full text link
    Context. We observe a solar jet at north polar coronal hole (NPCH) using SDO AIA 304 {\deg}A image data on 3 August 2010. The jet rises obliquely above the solar limb and then retraces its propagation path to fall back. Aims. We numerically model this observed solar jet by implementing a realistic (VAL-C) model of solar temperature. Methods. We solve two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed solar jet. We consider a localized velocity pulse that is essentially parallel to the background magnetic field lines and initially launched at the top of the solar photosphere. The pulse steepens into a shock at higher altitudes, which triggers plasma perturbations that exhibit the observed features of the jet. The typical direction of the pulse also clearly exhibits the leading front of the moving jet. Results. Our numerical simulations reveal that a large amplitude initial velocity pulse launched at the top of the solar photosphere produces in general the observed properties of the jet, e.g., upward and backward average velocities, height, width, life-time, and ballistic nature. Conclusions. The close matching between the jet observations and numerical simulations provides first strong evidence for the formation of this jet by a single velocity pulse. The strong velocity pulse is most likely generated by the low- atmospheric reconnection in the polar region which results in triggering of the jet. The downflowing material of the jet most likely vanishes in the next upcoming velocity pulses from lower solar atmosphere, and therefore distinctly launched a single jet upward in the solar atmosphere is observed.Comment: 8 pages, 4 figures, A&

    Modeling UV and X-Ray Emission in a Post-CME Current Sheet

    Full text link
    A post-CME current sheet (CS) is a common feature developed behind an erupting flux rope in CME models. Observationally, white light observations have recorded many occurrences of a thin ray appearing behind a CME eruption that closely resembles a post-CME CS in its spatial correspondence and morphology. UV and X-ray observations further strengthen this interpretation by the observations of high temperature emission at locations consistent with model predictions. The next question then becomes whether the properties inside a post-CME CS predicted by a model agree with observed properties. In this work, we assume that the post-CME CS is a consequence of Petschek-like reconnection and that the observed ray-like structure is bounded by a pair of slow mode shocks developed from the reconnection site. We perform time-dependent ionization calculations and model the UV line emission. We find that such a model is consistent with SOHO/UVCS observations of the post-CME CS. The change of Fe XVIII emission in one event implies an inflow speed of ~10 km/s and a corresponding reconnection rate of M_A ~ 0.01. We calculate the expected X-ray emission for comparison with X-ray observations by Hinode/XRT, as well as the ionic charge states as would be measured in-situ at 1 AU. We find that the predicted count rate for Hinode/XRT agree with what was observed in a post-CME CS on April 9, 2008, and the predicted ionic charge states are consistent with high ionization states commonly measured in the interplanetary CMEs. The model results depend strongly on the physical parameters in the ambient corona, namely the coronal magnetic field, the electron density and temperature during the CME event. It is crucial to obtain these ambient coronal parameters and as many facets of the CS properties as possible by observational means so that the post-CME current sheet models can be scrutinized more effectively

    Nonlinear Parker Instability with the Effect of Cosmic-Ray Diffusion

    Full text link
    We present the results of linear analysis and two-dimensional local magnetohydrodynamic (MHD) simulations of the Parker instability, including the effects of cosmic rays (CRs), in magnetized gas disks (galactic disks). As an unperturbed state for both the linear analysis and the MHD simulations, we adopted an equilibrium model of a magnetized two-temperature layered disk with constant gravitational acceleration parallel to the normal of the disk. The disk comprises a thermal gas, cosmic rays and a magnetic field perpendicular to the gravitational accelerartion. Cosmic ray diffusion along the magnetic field is considered; cross field-line diffusion is supposed to be small and is ignored. We investigated two cases in our simulations. In the mechanical perturbation case we add a velocity perturbation parallel to the magnetic field lines, while in the explosional perturbation case we add cosmic ray energy into a sphere where the cosmic rays are injected. Linear analysis shows that the growth rate of the Parker instability becomes smaller if the coupling between the CR and the gas is stronger (i.e., the CR diffusion coefficient is smaller). Our MHD simulations of the mechanical perturbation confirm this result. We show that the falling matter is impeded by the CR pressure gradient, this causes a decrease in the growth rate. In the explosional perturbation case, the growth of the magnetic loop is faster when the coupling is stronger in the early stage. However, in the later stage the behavior of the growth rate becomes similar to the mechanical perturbation case.Comment: 18 pages, 11 figures, accepted in Ap

    Coronal hole boundaries at small scales: III. EIS and SUMER views

    Full text link
    We report on the plasma properties of small-scale transient events identified in the quiet Sun, coronal holes and their boundaries. We use spectroscopic co-observations from SUMER/SoHO and EIS/Hinode combined with high cadence imaging data from XRT/Hinode. We measure Doppler shifts using single and multiple Gauss fits of transition region and coronal lines as well as electron densities and temperatures. We combine co-temporal imaging and spectroscopy to separate brightening expansions from plasma flows. The transient brightening events in coronal holes and their boundaries were found to be very dynamical producing high density outflows at large speeds. Most of these events represent X-ray jets from pre-existing or newly emerging coronal bright points at X-ray temperatures. The average electron density of the jets is logNe ~ 8.76 cm^-3 while in the flaring site it is logNe ~ 9.51 cm^-3. The jet temperatures reach a maximum of 2.5 MK but in the majority of the cases the temperatures do not exceed 1.6 MK. The footpoints of jets have temperatures of a maximum of 2.5 MK though in a single event scanned a minute after the flaring the measured temperature was 12 MK. The jets are produced by multiple microflaring in the transition region and corona. Chromospheric emission was only detected in their footpoints and was only associated with downflows. The Doppler shift measurements in the quiet Sun transient brightenings confirmed that these events do not produce jet-like phenomena. The plasma flows in these phenomena remain trapped in closed loops.Comment: 16 pages, accepted for publication in A&

    Particle kinetic analysis of a polar jet from SECCHI COR data

    Get PDF
    Aims. We analyze coronagraph observations of a polar jet observed by the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite onboard the Solar TErrestrial RElations Observatory (STEREO) spacecraft. Methods. In our analysis we compare the brightness distribution of the jet in white-light coronagraph images with a dedicated kinetic particle model. We obtain a consistent estimate of the time that the jet was launched from the solar surface and an approximate initial velocity distribution in the jet source. The method also allows us to check the consistency of the kinetic model. In this first application, we consider only gravity as the dominant force on the jet particles along the magnetic field. Results. We find that the kinetic model explains the observed brightness evolution well. The derived initiation time is consistent with the jet observations by the EUVI telescope at various wavelengths. The initial particle velocity distribution is fitted by Maxwellian distributions and we find deviations of the high energy tail from the Maxwellian distributions. We estimate the jet's total electron content to have a mass between 3.2 \times 1014 and 1.8 \times 1015 g. Mapping the integrated particle number along the jet trajectory to its source region and assuming a typical source region size, we obtain an initial electron density between 8 \times 109 and 5 \times 1010 cm-3 that is characteristic for the lower corona or the upper chromosphere. The total kinetic energy of all particles in the jet source region amounts from 2.1 \times 1028 to 2.4 \times 1029 erg.Comment: A&A, in pres

    Diffusion of transcription factors can drastically enhance the noise in gene expression

    Get PDF
    We study by simulation the effect of the diffusive motion of repressor molecules on the noise in mRNA and protein levels in the case of a repressed gene. We find that spatial fluctuations due to diffusion can drastically enhance the noise in gene expression. For a fixed repressor strength, the noise due to diffusion can be minimized by increasing the number of repressors or by decreasing the rate of the open complex formation. We also show that the effect of spatial fluctuations can be well described by a two-step kinetic scheme, where formation of an encounter complex by diffusion and the subsequent association reaction are treated separately. Our results also emphasize that power spectra are a highly useful tool for studying the propagation of noise through the different stages of gene expression.Comment: 15 pages, 6 figures, REVTeX
    corecore