3,604 research outputs found
Detection of a Temperature Inversion in the Broadband Infrared Emission Spectrum of TrES-4
We estimate the strength of the bandpass-integrated thermal emission from the
extrasolar planet TrES-4 at 3.6, 4.5, 5.8, and 8.0 micron using the Infrared
Array Camera (IRAC) on the Spitzer Space Telescope. We find relative eclipse
depths of 0.137 +/- 0.011%, 0.148 +/- 0.016%, 0.261 +/- 0.059%, and 0.318 +/-
0.044% in these four bandpasses, respectively. We also place a 2 sigma upper
limit of 0.37% on the depth of the secondary eclipse in the 16 micron IRS
peak-up array. These eclipse depths reveal that TrES-4 has an emission spectrum
similar to that of HD 209458b, which requires the presence of water emission
bands created by an thermal inversion layer high in the atmosphere in order to
explain the observed features. TrES-4 receives more radiation from its star
than HD 209458b and has a correspondingly higher effective temperature,
therefore the presence of a temperature inversion in this planet's atmosphere
lends support to the idea that inversions might be correlated with the
irradiance received by the planet. We find no evidence for any offset in the
timing of the secondary eclipse, and place a 3 sigma upper limit of
|ecos(omega)|<0.0058 where e is the planet's orbital eccentricity and omega is
the argument of pericenter. From this we conclude that tidal heating from
ongoing orbital circulatization is unlikely to be the explanation for TrES-4's
inflated radius.Comment: 10 pages in emulateapj format, 7 figures (some in color), accepted
for publication in Ap
Quark Coulomb Interactions and the Mass Difference of Mirror Nuclei
We study the Okamoto-Nolen-Schiffer (ONS) anomaly in the binding energy of
mirror nuclei at high density by adding a single neutron or proton to a quark
gluon plasma. In this high-density limit we find an anomaly equal to two-thirds
of the Coulomb exchange energy of a proton. This effect is dominated by quark
electromagnetic interactions---rather than by the up-down quark mass
difference. At normal density we calculate the Coulomb energy of neutron matter
using a string-flip quark model. We find a nonzero Coulomb energy because of
the neutron's charged constituents. This effect could make a significant
contribution to the ONS anomaly.Comment: 4 pages, 2 figs. sub. to Phys. Rev. Let
The Broadband Infrared Emission Spectrum of the Exoplanet TrES-3
We use the Spitzer Space Telescope to estimate the dayside thermal emission
of the exoplanet TrES-3 integrated in the 3.6, 4.5, 5.8, and 8.0 micron
bandpasses of the Infrared Array Camera (IRAC) instrument. We observe two
secondary eclipses and find relative eclipse depths of 0.00346 +/- 0.00035,
0.00372 +/- 0.00054, 0.00449 +/- 0.00097, and 0.00475 +/- 0.00046, respectively
in the 4 IRAC bandpasses. We combine our results with the earlier K band
measurement of De Mooij et al. (2009), and compare them with models of the
planetary emission. We find that the planet does not require the presence of an
inversion layer in the high atmosphere. This is the first very strongly
irradiated planet that does not have a temperature inversion, which indicates
that stellar or planetary characteristics other than temperature have an
important impact on temperature inversion. De Mooij & Snellen (2009) also
detected a possible slight offset in the timing of the secondary eclipse in K
band. However, based on our 4 Spitzer channels, we place a 3sigma upper limit
of |ecos(w)| < 0.0056 where e is the planets orbital eccentricity and w is the
longitude of the periastron. This result strongly indicates that the orbit is
circular, as expected from tidal circularization theory.Comment: Accepted by Ap
Detection of Planetary Emission from the Exoplanet TrES-2 using Spitzer /IRAC
We present here the results of our observations of TrES-2 using the Infrared
Array Camera on Spitzer. We monitored this transiting system during two
secondary eclipses, when the planetary emission is blocked by the star. The
resulting decrease in flux is 0.127%+-0.021%, 0.230%+-0.024%, 0.199%+-0.054%,
and 0.359%+-0.060%, at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns,
respectively. We show that three of these flux contrasts are well fit by a
black body spectrum with T_{eff}=1500 K, as well as by a more detailed model
spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in
all four IRAC channels can be explained by models with and without a thermal
inversion in the atmosphere of TrES-2, although with different atmospheric
chemistry. Based on the assumption of thermochemical equilibrium, the chemical
composition of the inversion model seems more plausible, making it a more
favorable scenario. TrES-2 also falls in the category of highly irradiated
planets which have been theoretically predicted to exhibit thermal inversions.
However, more observations at infrared and visible wavelengths would be needed
to confirm a thermal inversion in this system. Furthermore, we find that the
times of the secondary eclipses are consistent with previously published times
of transit and the expectation from a circular orbit. This implies that TrES-2
most likely has a circular orbit, and thus does not obtain additional thermal
energy from tidal dissipation of a non-zero orbital eccentricity, a proposed
explanation for the large radius of this planet.Comment: 8 pages, 4 figures, 2 tables. Accepted for publication in the
Astrophysical Journal. V2: New figure added ; other minor changes throughou
Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity
Kepler-1656b is a 5 planet with an orbital period of 32 days initially
detected by the prime Kepler mission. We obtained precision radial velocities
of Kepler-1656 with Keck/HIRES in order to confirm the planet and to
characterize its mass and orbital eccentricity. With a mass of ,
Kepler-1656b is more massive than most planets of comparable size. Its high
mass implies that a significant fraction, roughly 80%, of the planet's total
mass is in high density material such as rock/iron, with the remaining mass in
a low density H/He envelope. The planet also has a high eccentricity of , the largest measured eccentricity for any planet less than 100
. The planet's high density and high eccentricity may be the result of one
or more scattering and merger events during or after the dispersal of the
protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa
The Affective Impact of Financial Skewness on Neural Activity and Choice
Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice
Searching for Far-Ultraviolet Auroral/Dayglow Emission from HD209458b
We present recent observations from the HST-Cosmic Origins Spectrograph aimed
at characterizing the auroral emission from the extrasolar planet HD209458b. We
obtained medium-resolution (R~18-20,000) far-ultraviolet (1150-1700A) spectra
at both the Phase 0.25 and Phase 0.75 quadrature positions as well as a stellar
baseline measurement at secondary eclipse. This analysis includes a catalog of
stellar emission lines and a star-subtracted spectrum of the planet. We present
an emission model for planetary H2 emission, and compare this model to the
planetary spectrum. No unambiguously identifiable atomic or molecular features
are detected, and upper limits are presented for auroral/dayglow line
strengths. An orbital velocity cross-correlation analysis finds a statistically
significant (3.8 sigma) feature at +15 (+/- 20) km/s in the rest frame of the
planet, at 1582 A. This feature is consistent with emission from H2 B-X (2-9)
P(4) (lambda_{rest} = 1581.11 A), however the physical mechanism required to
excite this transition is unclear. We compare limits on relative line strengths
seen in the exoplanet spectrum with models of ultraviolet fluorescence to
constrain the atmospheric column density of neutral hydrogen between the star
and the planetary surface. These results support models of short period
extrasolar giant planets with weak magnetic fields and extended atomic
atmospheres.Comment: Accepted to ApJ. 12 pages, 5 figures, 4 table
Large-Scale Circulation and Climate Variability
The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis
- …
