We estimate the strength of the bandpass-integrated thermal emission from the
extrasolar planet TrES-4 at 3.6, 4.5, 5.8, and 8.0 micron using the Infrared
Array Camera (IRAC) on the Spitzer Space Telescope. We find relative eclipse
depths of 0.137 +/- 0.011%, 0.148 +/- 0.016%, 0.261 +/- 0.059%, and 0.318 +/-
0.044% in these four bandpasses, respectively. We also place a 2 sigma upper
limit of 0.37% on the depth of the secondary eclipse in the 16 micron IRS
peak-up array. These eclipse depths reveal that TrES-4 has an emission spectrum
similar to that of HD 209458b, which requires the presence of water emission
bands created by an thermal inversion layer high in the atmosphere in order to
explain the observed features. TrES-4 receives more radiation from its star
than HD 209458b and has a correspondingly higher effective temperature,
therefore the presence of a temperature inversion in this planet's atmosphere
lends support to the idea that inversions might be correlated with the
irradiance received by the planet. We find no evidence for any offset in the
timing of the secondary eclipse, and place a 3 sigma upper limit of
|ecos(omega)|<0.0058 where e is the planet's orbital eccentricity and omega is
the argument of pericenter. From this we conclude that tidal heating from
ongoing orbital circulatization is unlikely to be the explanation for TrES-4's
inflated radius.Comment: 10 pages in emulateapj format, 7 figures (some in color), accepted
for publication in Ap