36 research outputs found
Expanding the genetic toolbox for the obligate human pathogen Streptococcus pyogenes
Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen Streptococcus pyogenes. To overcome this limitation and enable the straightforward investigation of gene functions in S. pyogenes, we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for S. pyogenes. The new replicative plasmids feature low- and high-copy replicons combined with different resistance cassettes and a standardized multiple cloning site for rapid cloning procedures. We designed site-specific integrative plasmids and verified their integration by nanopore sequencing. To minimize the effect of plasmid integration on bacterial physiology, we screened publicly available RNA-sequencing datasets for transcriptionally silent sites. We validated this approach by designing the integrative plasmid pSpy0K6 targeting the transcriptionally silent gene SPy_1078. Analysis of the activity of different constitutive promoters indicated a wide variety of strengths, with the lactococcal promoter P23 showing the strongest activity and the synthetic promoter PxylS2 showing the weakest activity. Further, we assessed the functionality of three inducible regulatory elements including a zinc- and an IPTG-inducible promoter as well as an erythromycin-inducible riboswitch that showed low-to-no background expression and high inducibility. Additionally, we demonstrated the applicability of two codon-optimized fluorescent proteins, mNeongreen and mKate2, as reporters in S. pyogenes. We therefore adapted the chemically defined medium called RPMI4Spy that showed reduced autofluorescence and enabled efficient signal detection in plate reader assays and fluorescence microscopy. Finally, we developed a plasmid-based system for genome engineering in S. pyogenes featuring the counterselection marker pheS*, which enabled the scarless deletion of the sagB gene. This new toolbox simplifies previously laborious genetic manipulation procedures and lays the foundation for new methodologies to study gene functions in S. pyogenes, leading to a better understanding of its virulence mechanisms and physiology.Peer Reviewe
Next-generation museomics disentangles one of the largest primate radiations
Guenons (tribe Cercopithecini) are one of the most diverse groups of primates. They occupy all of sub-Saharan Africa and show great variation in ecology, behavior, and morphology. This variation led to the description of over 60 species and subspecies. Here, using next-generation DNA sequencing (NGS) in combination with targeted DNA capture, we sequenced 92 mitochondrial genomes from museum-preserved specimens as old as 117 years. We infer evolutionary relationships and estimate divergence times of almost all guenon taxa based on mitochondrial genome sequences. Using this phylogenetic framework, we infer divergence dates and reconstruct ancestral geographic ranges.We conclude that the extraordinary radiation of guenons has been a complex process driven by, among other factors, localized fluctuations of African forest cover. We find incongruences between phylogenetic trees reconstructed from mitochondrial and nuclear DNA sequences, which can be explained by either incomplete lineage sorting or hybridization. Furthermore, having produced the largest mitochondrial DNA data set from museum specimens, we document how NGS technologies can "unlock" museum collections, thereby helping to unravel the tree-of-life. [Museum collection; next-generation DNA sequencing; primate radiation; speciation; target capture.] © The Author(s) 2013.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
MPUSP/RNA_editing_analysis_pipeline: Initial release, version 6.0
Initial Release of a pipeline, which is designed to analyse RNA editing in paired-end sequencing data and it is designed to work with DNA and RNA sequencing data from the same sample (paired DNA and RNA data). Paired-end sequencing data for input is recommended, but is optional and the pipeline can run with forward read data only and with mixed datasets
High-throughput sequencing of complete human mtDNA genomes from the Philippines
Because of the time and cost associated with Sanger sequencing of complete human mtDNA genomes, practically all evolutionary studies have screened samples first to define haplogroups and then either selected a few samples from each haplogroup, or many samples from a particular haplogroup of interest, for complete mtDNA genome sequencing. Such biased sampling precludes many analyses of interest. Here, we used high-throughput sequencing platforms to generate, rapidly and inexpensively, 109 complete mtDNA genome sequences from random samples of individuals from three Filipino groups, including one Negrito group, the Mamanwa. We obtained on average ∼55-fold coverage per sequence, with <1% missing data per sequence. Various analyses attest to the accuracy of the sequences, including comparison to sequences of the first hypervariable segment of the control region generated by Sanger sequencing; patterns of nucleotide substitution and the distribution of polymorphic sites across the genome; and the observed haplogroups. Bayesian skyline plots of population size change through time indicate similar patterns for all three Filipino groups, but sharply contrast with such plots previously constructed from biased sampling of complete mtDNA genomes, as well as with an artificially constructed sample of sequences that mimics the biased sampling. Our results clearly demonstrate that the high-throughput sequencing platforms are the methodology of choice for generating complete mtDNA genome sequences
A Mitogenomic Phylogeny of Living Primates
<div><p>Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.</p></div
Estimated divergence ages as obtained from dataset mtDNA1 along with their 95% credibility intervals (blue bars).
<p>Newly generated sequences are indicated in bold. A geological time scale is given below the tree. For detailed information on estimated divergence ages see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0069504#pone.0069504.s003" target="_blank">Table S3</a>.</p
Phylogram showing the phylogenetic relationships among the investigated primate mt genomes as obtained from dataset mtDNA1.
<p>Newly generated sequences are indicated in bold. Black dots on nodes indicate ML support and Bayesian posterior probabilities of 100% and 1.0, respectively. Lower values are shown at the respective branches.</p