126 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF

    Glossary of normal faults

    No full text
    Increased interest in normal faults and extended terranes has led to the development of an increasingly complex terminology. The most important terms are defined in this paper, with original references being given wherever possible, along with examples of current usage

    Preface.

    No full text
    no abstrac

    Moine thrust zone mylonites at the Stack of Glencoul : I - microstructures, strain and influence of recrystallization on quartz crystal fabric development.

    No full text
    International audienceSince the early descriptions published by Callaway in 1884, the gently dipping mylonites exposed along the Moine Thrust at the Stack of Glencoul have drawn generations of geologists to the northern part of the Assynt district. These mylonites, derived from Cambrian quartzites (footwall) and Moine pelites and psammites (hanging wall), have figured prominently in: a) early research into the influence of crystal plastic deformation and recrystallization on microstructural and crystal fabric evolution; b) debates on the kinematic interpretation of macro- and micro-structures and crystal fabrics; and c) debates on the tectonic significance of such kinematic data. In this paper first we briefly review the historical aspects of this research and then, using both previously published and unpublished data, document the finite strain and quartz fabric development at this classic mylonite locality. A tectonic interpretation of these data, together with quantitative estimates of flow vorticities associated with mylonite formation at the Stack of Glencoul, are presented in a companion paper by Law (2010)
    corecore