382 research outputs found

    Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA

    Full text link
    We report results of air monitoring started due to the recent natural catastrophe on 11 March 2011 in Japan and the severe ensuing damage to the Fukushima Dai-ichi nuclear reactor complex. On 17-18 March 2011, we registered the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. We measured the evolution of the activities over a period of 23 days at the end of which the activities had mostly fallen below our detection limit. The highest detected activity amounted to 4.4 +/- 1.3 mBq/m^3 of 131-I on 19-20 March.Comment: 7 pages, 5 figures, published in Journal of Environmental Radioactivit

    First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier

    Full text link
    We have operated a liquid-argon large-electron-multiplier time-projection chamber (LAr LEM-TPC) with a large active area of 76 ×\times 40 cm2^2 and a drift length of 60 cm. This setup represents the largest chamber ever achieved with this novel detector concept. The chamber is equipped with an immersed built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which, when subjected to an external AC HV of ∌\sim1 kVpp_{\mathrm{pp}}, statically charges up to a voltage a factor of ∌\sim30 higher inside the LAr vessel, creating a uniform drift field of ∌\sim0.5 kV/cm over the full drift length. This large LAr LEM-TPC was brought into successful operation in the double-phase (liquid-vapor) operation mode and tested during a period of ∌\sim1 month, recording impressive three-dimensional images of very high-quality from cosmic particles traversing or interacting in the sensitive volume. The double phase readout and HV systems achieved stable operation in cryogenic conditions demonstrating their good characteristics, which particularly suit applications for next-generation giant-scale LAr-TPCs.Comment: 26 pages, 19 figure

    Implications of the Muon Anomalous Magnetic Moment for Supersymmetry

    Get PDF
    We re-examine the bounds on supersymmetric particle masses in light of the E821 data on the muon anomalous magnetic moment. We confirm, extend and supersede previous bounds. In particular we find (at one sigma) no lower limit on tan(beta) or upper limit on the chargino mass implied by the data at present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at least one sparticle must be lighter than 345 to 440 GeV. However, the E821 central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV. For tan(beta) < 10, the data indicates a high probability for direct discovery of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde

    Form Factors in the radiative pion decay

    Get PDF
    We perform an analysis of the form factors that rule the structure-dependent amplitude in the radiative pion decay. The resonance contributions to pion -> e nu_e gamma decays are computed through the proper construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties of the three-point Green functions VVP and VAP, and by demanding the smoothing of the form factors at high transfer of momentum. A comparison between theoretical and experimental determinations of the form factors is also carried out. We also consider and evaluate the role played by a non-standard tensor form factor. We conclude that, at present and due to the hadronic incertitudes, the search for New Physics in this process is not feasible.Comment: 14 pages, no figures. Typos corrected. Accepted for publication in The European Physical Journal

    Supersymmetric Dark Matter and Yukawa Unification

    Get PDF
    An analysis of supersymmetric dark matter under the Yukawa unification constraint is given. The analysis utilizes the recently discovered region of the parameter space of models with gaugino mass nonuniversalities where large negative supersymmetric corrections to the b quark mass appear to allow b−τb-\tau unification for a positive ÎŒ\mu sign consistent with the b→s+Îłb\to s+\gamma and gΌ−2g_{\mu}-2 constraints. In the present analysis we use the revised theoretical determination of aÎŒSMa_{\mu}^{SM} (aÎŒ=(gΌ−2)/2a_{\mu}= (g_{\mu}-2)/2) in computing the difference aÎŒexp−aÎŒSMa_{\mu}^{exp}-a_{\mu}^{SM} which takes account of a reevaluation of the light by light contribution which has a positive sign. The analysis shows that the region of the parameter space with nonuniversalities of the gaugino masses which allows for unification of Yukawa couplings also contains regions which allow satisfaction of the relic density constraint. Specifically we find that the lightest neutralino mass consistent with the relic density constraint, bτb\tau unification for SU(5) and b−t−τb-t-\tau unification for SO(10) in addition to other constraints lies in the region below 80 GeV. An analysis of the maximum and the minimum neutralino-proton scalar cross section for the allowed parameter space including the effect of a new determination of the pion-nucleon sigma term is also given. It is found that the full parameter space for this class of models can be explored in the next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig

    Radiative processes (tau -> mu gamma, mu -> e gamma and muon g-2) as probes of ESSM/SO(10)

    Full text link
    The Extended Supersymmetric Standard Model (ESSM), motivated on several grounds, introduces two vectorlike families (16 + 16-bar) of SO(10)) with masses of order one TeV. It is noted that the successful predictions of prior work on fermion masses and mixings, based on MSSM embedded in SO(10), can be retained rather simply within the ESSM extension. These include an understanding of the smallness of V_{cb} ~ 0.04 and the largeness of nu_mu - nu_tau oscillation angle, sin^2 2 theta_{nu_mu nu_tau}^{osc} ~ 1. We analyze the new contributions arising through the exchange of the vectorlike families of ESSM to radiative processes including tau -> mu gamma, mu -> e gamma, b -> s gamma, EDM of the muon and the muon (g-2). We show that ESSM makes significant contributions especially to the decays tau -> mu gamma and mu -> e gamma and simultaneously to muon (g-2). For a large and plausible range of relevant parameters, we obtain: a_mu^{ESSM} ~ +(10-40) times 10^{-10}, with a correlated prediction that tau -> mu gamma should be discovered with an improvement in its current limit by a factor of 3-20. The implications for mu -> e gamma are very similar. The muon EDM is within reach of the next generation experiments. Thus, ESSM with heavy leptons being lighter than about 700 GeV (say) can be probed effectively by radiative processes before a direct search for these vectorlike leptons and quarks is feasible at the LHC.Comment: 27 pages LaTex, 2 figure

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201
    • 

    corecore