7,165 research outputs found
Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross
The paper arXiv:1308.0735 questions some of the technical assumptions made by
the TLEP Steering Group when estimating in arXiv:1305.6498 the power
requirement for the very high energy e+e- storage ring collider TLEP. We show
that our assumptions are based solidly on CERN experience with LEP and the LHC,
as well accelerators elsewhere, and confirm our earlier baseline estimate of
the TLEP power consumption.Comment: 6 page
A High Luminosity e+e- Collider to study the Higgs Boson
A strong candidate for the Standard Model Scalar boson, H(126), has been
discovered by the Large Hadron Collider (LHC) experiments. In order to study
this fundamental particle with unprecedented precision, and to perform
precision tests of the closure of the Standard Model, we investigate the
possibilities offered by An e+e- storage ring collider. We use a design
inspired by the B-factories, taking into account the performance achieved at
LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most
relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34
cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km
circumference. The achievable luminosity increases with the bending radius, and
for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision
points appears feasible. Beamstrahlung becomes relevant at these high
luminosities, leading to a design requirement of large momentum acceptance both
in the accelerating system and in the optics. The larger machine could reach
the top quark threshold, would yield luminosities per interaction point of
10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W
pair production threshold (80 GeV per beam). The energy spread is reduced in
the larger ring with respect to what is was at LEP, giving confidence that beam
polarization for energy calibration purposes should be available up to the W
pair threshold. The capabilities in term of physics performance are outlined.Comment: Submitted to the European Strategy Preparatory Group 01-04-2013 new
version as re-submitted to PRSTA
The Higgs Working Group: Summary Report (2001)
Report of the Higgs working group for the Workshop `Physics at TeV
Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate
sections: A. Theoretical Developments B. Higgs Searches at the Tevatron C.
Experimental Observation of an invisible Higgs Boson at LHC D. Search for the
Standard Model Higgs Boson using Vector Boson Fusion at the LHC E. Study of the
MSSM channel at the LHC F. Searching for Higgs Bosons in
Production G. Studies of Charged Higgs Boson Signals for the
Tevatron and the LHCComment: 120 pages, latex, many figures, proceedings of the Workshop `Physics
at TeV Colliders', Les Houches, France, 21 May - 1 June 2001, full Author
list included in paper. Typos corrected, author list and acknowledgements
completed. Convernors: D. Cavalli, A. Djouadi, K. Jakobs, A. Nikitenko, M.
Spira, C.E.M. Wagner, W.-M. Ya
Higgs After the Discovery: A Status Report
Recently, the ATLAS and CMS collaborations have announced the discovery of a
125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and
2012 LHC and Tevatron Higgs data in the context of simplified new physics
models, paying close attention to models which can enhance the diphoton rate
and allow for a natural weak-scale theory. Combining the available LHC and
Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels,
we derive constraints on the effective low-energy theory of the Higgs boson. We
map several simplified scenarios to the effective theory, capturing numerous
new physics models such as supersymmetry, composite Higgs, dilaton. We further
study models with extended Higgs sectors which can naturally enhance the
diphoton rate. We find that the current Higgs data are consistent with the
Standard Model Higgs boson and, consequently, the parameter space in all models
which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and
doublet-singlet bugs corrected, references added; v3: ATLAS WW channel
included, comments and references adde
Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion
The hint of a new particle around 125 GeV at the LHC through the decay modes
of diphoton and a number of others may point to quite a number of
possibilities. While at the LHC the dominant production mechanism for the Higgs
boson of the standard model and some other extensions is via the gluon fusion
process, the alternative vector boson fusion is more sensitive to electroweak
symmetry breaking through the gauge-Higgs couplings and therefore can be used
to probe for models beyond the standard model. In this work, using the well
known dijet-tagging technique to single out the vector boson fusion mechanism,
we investigate its capability to discriminate a number of models that have been
suggested to give an enhanced inclusive diphoton production rate, including the
standard model Higgs boson, fermiophobic Higgs boson, Randall-Sundrum radion,
inert-Higgs-doublet model, two-Higgs-doublet model, and the MSSM. The rates in
vector-boson fusion can give more information of the underlying models to help
distinguishing among the models.Comment: 31 pages, 3 figures; in this version some wordings are change
Excess Higgs Production in Neutralino Decays
The ATLAS and CMS experiments have recently claimed discovery of a Higgs
boson-like particle at ~5 sigma confidence and are beginning to test the
Standard Model predictions for its production and decay. In a variety of
supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and
the LSP. In natural SUSY models, a light third generation squark decaying
through this chain can lead to large excess Higgs production while evading
existing BSM searches. Such models can be observed at the 8 TeV LHC in channels
exploiting the rare diphoton decays of the Higgs produced in the cascade decay.
Identifying a diphoton resonance in association with missing energy, a lepton,
or b-tagged jets is a promising search strategy for discovery of these models,
and would immediately signal new physics involving production of a Higgs boson.
We also discuss the possibility that excess Higgs production in these SUSY
decays can be responsible for enhancements of up to 50% over the SM prediction
for the observed rate in the existing inclusive diphoton searches, a scenario
which would likely by the end of the 8 TeV run be accompanied by excesses in
the diphoton + lepton/MET and SUSY multi-lepton/b searches and a potential
discovery in a diphoton + 2b search.Comment: 42 pages, 19 figure
Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the top quark pair production cross section in
ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with
the Collider Detector at Fermilab. We select ttbar decays into the final states
e nu + jets and mu nu + jets, in which at least one b quark from the t-quark
decays is identified using a secondary vertex-finding algorithm. Assuming a top
quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat)
+1.1-0.9 (syst) pb. We also report the first observation of ttbar with
significance greater than 5 sigma in the subsample in which both b quarks are
identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3
(syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page
- …