Recently, the ATLAS and CMS collaborations have announced the discovery of a
125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and
2012 LHC and Tevatron Higgs data in the context of simplified new physics
models, paying close attention to models which can enhance the diphoton rate
and allow for a natural weak-scale theory. Combining the available LHC and
Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels,
we derive constraints on the effective low-energy theory of the Higgs boson. We
map several simplified scenarios to the effective theory, capturing numerous
new physics models such as supersymmetry, composite Higgs, dilaton. We further
study models with extended Higgs sectors which can naturally enhance the
diphoton rate. We find that the current Higgs data are consistent with the
Standard Model Higgs boson and, consequently, the parameter space in all models
which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and
doublet-singlet bugs corrected, references added; v3: ATLAS WW channel
included, comments and references adde