685 research outputs found

    Manipulation of the Bitcoin market: an agent-based study

    Get PDF
    Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market, both directly influencing the price of an asset or indirectly by misinforming other market participants. Such behavior can be a source of systemic risk and increasing distrust for the market participants, consequences that call for viable countermeasures. Building on the foundations provided by the extant literature, this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018. The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies, including a fraudulent agent, initialized from empirical data and who performs market manipulation. The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume. Simulation results provide a satisfactory fit to historical data. Several price dips and volume anomalies are explained by the actions of the fraudulent trader, completing the known body of evidence extracted from blockchain activity. The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period; without this agent, it would have been very unlikely that the price had reached the heights as it did in late 2017. The insights gained from the model, especially the connection between liquidity and manipulation efficiency, unfold a discussion on how to prevent illicit behavior

    Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter AedVA^V_{ed} was measured for the 2H⃗(e⃗,e′p)n^2 \vec{\rm H}(\vec e,e^\prime p)n reaction for missing momenta up to 350 MeV/cc at a four-momentum transfer squared of 0.21 (GeV/c)2^2. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore