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a b s t r a c t

There has been a number of reports showing evidence that human movement behaviour
follows patterns resembling Lévy walks. These studies focus on the foraging patterns
of rural humans and human hunter-gatherers. Here, we investigate motion patterns of
visitors of a large dance event in the Johan Cruijff ArenA football stadium in Amsterdam.
We find intermittent, persistent motion patterns. Using a path segmentation algorithm,
we measure displacements (step lengths), and movement durations. We explore an alter-
native approach in the analysis of the movement tracks to overcome the limitations set
by the bounded, concentric space of the building. Displacement distributions resulting
from our alternative model deviate from the exponential and are best fit by a stretched
exponential distribution. To further investigate the motion, we look at the mean-square
displacement and autocorrelation of the turning angles. Although we find no evidence
of Lévy walks, individuals move with directional persistence and superdiffusively up to
a scale set by the size of the stadium.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The availability of data at increasingly fine spatial and temporal resolutions, together with a growing number of related
esearch questions, has led to the emergence of the interdisciplinary research field of movement ecology [1]. The field of
movement ecology has witnessed the development of several different random walk models for the description of animal
motion. For many years, correlated random walk models have been a dominant conceptual framework for describing
animal movement patterns [2]. In parallel there has been a growing number of reports showing that a wide variety of
organisms exhibit movement patterns resembling Lévy flights or walks. This has given rise to the so-called Lévy flight
foraging hypothesis, which states that movements of animals searching for various kinds of resources follow power law
distributions (see [3] for an overview). Other studies have focused on the intermittency of animal movement, and have
proposed models which combine alternating phases and scales [4–6]

Though not always from a foraging perspective, studies in movement behaviour have extended to humans too.
Several pioneering studies in human mobility found that motion patterns of humans follow truncated power-law
distributions [7,8]. Rhee et al. (2008) found truncated power-laws in GPS traces of volunteers in outdoor settings typically
within a radius of tens of kilometers [9]. Raichlen et al. (2014) published evidence of Lévy walks in the movement patterns
of 44 Hadza hunter-gatherers of northern Tanzania [10]. More recently, Reynolds et al. (2018) published evidence of Lévy
walks in the movement patterns of rural humans in Mexico, and two different groups in Brazil [11]. Others, focusing on
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uman mobility on intra-urban scales, have found different distributions, such as log-normal [12], and exponential [13,14].
here is no agreement on which distribution best describes the empirical data (see [12] for an overview). Moreover, it is
mportant to note that the validity of Lévy-like motion patterns in movement ecology is still controversial [15].

There is no previous research on human mobility that focuses exclusively on the movement of pedestrians, without
nterference of other transport means. Existing literature on human movement behaviour focuses on foraging patterns of
ural humans and humans following a hunting and gathering lifestyle [10,11,16].

Here we analyse the movement behaviour of humans during an entertainment event, in a metropolitan context. We
nalyse movement data of visitors of a large dance event in the Johan Cruijff ArenA football stadium in Amsterdam. We
se localisation of smart phones based on Wi-Fi detections to reconstruct individual trajectories, and use this as a proxy
or human movement. The data provides insight into the movement dynamics of pedestrians that move freely in a large
ut bounded space, during more than 6 h of time. The bounded, concentric space of the Arena is not ideal for detecting
arge displacements. Due to the concentric layout, displacements are expected not to exceed the length of the stadium, as
onger walks are forced into curved, circular trajectories. To overcome this limitation we explore an alternative approach
n the analysis of the movement tracks, which allows for curvature in the trajectories. Our alternative approach allows
s to measure arbitrarily large displacements, and facilitates possible underlying Lévy walk behaviour to emerge. This is
possibility we have to take into account, considering the existing evidence in animal and human movement behaviour.
The rest of the paper is organised as follows. In Section 2 we describe how we translate Wi-Fi measurements into
collection of movement tracks. We describe how we infer random walks from the movement tracks and measure
isplacements (step lengths), and movement durations. We introduce the statistical distributions included in the model
election. In Section 3 we describe the statistical results of our analysis, and discuss the findings in Section 4.

. Methods

.1. Data collection

We analyse data collected by the Wi-Fi network in the Johan Cruijff ArenA football stadium in Amsterdam. The wireless
etwork consists of 591 access points (APs) with known spatial coordinates. The network is designed for complete
overage in the stadium. Though APs are not distributed homogeneously, AP locations are chosen to maximise coverage
iven the unique structure of the building and its accessible areas.
At a constant frequency (1 Hz) the APs switch to ‘monitor mode’ and capture all wireless traffic, regardless of

estination addresses. The APs send reports of the monitoring results to a server where data are extracted, anonymised,
nd stored. The data contain the following information relevant for our research: the identity of the AP, the anonymised
dentity of source devices, received signal strengths (RSS) values, and timestamp indicating time of measurement.

We analyse Wi-Fi data collected during the Armin van Buuren dance event at May 12, 2017. Tickets for this event did
ot allocate seats, and people were free to walk around the stadium, including the pitch. The DJ stage was positioned
long the northern edge of the playing field. A large outer corridor encircling the building was interrupted at that side
f the building, being reserved for backstage functions. Other than that there were no obstacles present in the building,
llowing the normal free flow of visitors throughout the stadium.
The data contains detections of 82,950 unique MAC addresses, collected during more than 9 h from 5.20 PM to 03:00

M. When someone is not using his/her smart phone, the device eventually pauses all wireless communication. Therefore
etection periods of devices alternate with periods without any detection. These time gaps range from small (seconds,
inutes) to large (e.g. > 2 hours). We select data from devices with detection periods of minimum length minperiod,
ontaining time gaps that do not exceed a maximum length maxgap. Here, we use (minperiod = 5, maxgap = 1)
inutes, which reduces the number of devices to 11,031 devices. So, for each device we have one or several detection
eriods ranging from 5 min to several hours, and spread over the more than 6 h of the event time.
We estimate locations of smart phones using proximity detection, which determines the position of a device based

n its closeness to an AP with known spatial coordinates [17]. We store per time interval ∆t = 10 seconds the set of
Ps at which the device was detected, together with the strongest RSS value that occurred at each AP. We select the AP
ith the highest RSS value in the time interval. The time interval ∆t = 10 is chosen in order to maximise the number
f detections within the interval, while minimising the amount of displacement that is ‘missed’ during one time step,
ssuming a pedestrian velocity of 1 m·s−1, and a spatial accuracy of order ∼ 10 meter.
The proximity detection method produces temporal sequences of APs which are estimated to have been near a

evice. We ignore the z-coordinate and simplify the analysis to two dimensions. Although the accuracy of the proximity
etection method is low, we use the positioning results for studying displacements only and do not pretend to accurately
rack individuals. Inaccuracies average out over the large numbers of displacements and are not expected to contribute
ubstantially to displacement distributions. Also, the average distance between APs is on the order of 10 meters, while
he displacement distribution extends from 102 to over 103 meters.

During crowded events, noise can reach levels that lead to considerable distortion of the distribution of RSS values
ver the APs. This is problematic for the proximity detection method, which simply selects the AP with the single highest
SS value in the time interval. As a result, AP sequences contain random fluctuation: jumps back and forth between APs
hat do not reflect real movement. To deal with this problem we use a simple moving average to smooth the movement
racks.

Drawing a line between successive smoothed location estimates produces a trajectory, or movement track (see Fig. 1).
2
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Fig. 1. Example of a smoothed movement track (black line), together with the original AP sequence (grey line) produced by the proximity detection
method. The original sequence contains some spurious long jumps. Tracks are characterised by sequences of jumps back and forth within a bounded
region, alternated with sequences of jumps that constitute a larger displacement.

Fig. 2. Example of a track decomposed in two 1D time series (same as Fig. 1). Shown are the smoothed tracks (blue and green lines), together with
the original sequences (grey lines) produced by the proximity detection method. The intermittent character of the movement data is clearly visible.
Periods of rest alternate with periods of movement.

2.2. Movement track analysis

Movement tracks are characterised by (at least) two phases, or behavioural modes. Periods of rest alternate with
eriods of movement that form larger displacements. This aspect of the movement data shows up more clearly in 1D
rojections of the movement tracks onto the x- and y-axes (see Fig. 2). The observation also agrees with our intuition

about human behaviour, as non-stop motion would be unlikely. People stay in one place for some time, and then decide
to change location, usually in one continuous movement bout.

During the relocation phase individuals move continuously and with some degree of directional persistence. Due to the
concentric layout of the building, movement is forced into curved, or even circular trajectories. To analyse the movement
data within the random walk framework, we approximate it by series of straight line segments. From the segmented
movement tracks we can measure step lengths, and movement durations. We use the Douglas–Peucker algorithm to
segment the movement tracks [18]. The algorithm inserts break-points at large changes in the direction, and finds the
change-points between movement and rest. We reconnect the break-points using straight lines. This method is very
similar to the method introduced by Turchin (1998) [19] and used by Rhee et al. (2008) [9]. Below we describe the use
of the Douglas–Peucker algorithm in more detail.

After the segmentation, we have moves of variable duration. Now several possibilities arise for defining a step length.
A common approach is to set a critical turning angle θc to select the turning points (e.g. [9,10]). However, as has been
recognised, any choice of θ is necessarily arbitrary [20]. Therefore we only explore two opposite extremes θ = 0◦ and
c c

3
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Fig. 3. Example of a track decomposed in two 1D time series (same as Fig. 1), together with the Douglas–Peucker segmentation. The dotted vertical
lines represent the boundaries between the segments.

Fig. 4. Example of movement tracks with annotated waiting times (green), and displacements (red) (same track as in Figs. 1, 2, and 3). Displacements
may consist of multiple segments connecting large turns in the movement track.

θc = 180◦, and compare the results. Note that these two variants are similar to the rectangular and pause-based models
in [9]. When θc = 0◦, a move is defined by one straight line segment. This approach is deemed not very interesting in our
case, as observed step length distributions are expected to be truncated at the size of the stadium. When θc = 180◦, a move
consists of all the merged consecutive segments in between two periods of rest. The total length of the movement step
is then given by merging all the segments. After merging we can reconnect start and end points of the whole movement
episode as is done in [9]. However, this approach is again not fruitful in our case because we are in a circular arena. The
resulting distribution is expected to be the same as when θc = 0◦. Another possibility is to sum the sequence of lengths of
straight line segments that make up a full movement episode in between two periods of rest. We feel this last approach
most faithfully represents the actual movement behaviour. Step lengths correspond to actual behavioural events, instead
of resulting from reorientations that are enforced by the layout of the building. Also, the step lengths more accurately
describe the real distances travelled during the movement episodes.

In addition to the distribution of step lengths we study the movement durations t . Because pedestrians have finite
velocity, larger displacements take more time to be completed. Therefore, movement duration can be used as a measure
for displacement (as in [21–23]).

To break up the movement tracks in straight line segments we use the Douglas–Peucker algorithm [18]. First we
decompose the 2D movement path into two 1D, x and y-coordinate time series (see Fig. 3). We apply the segmentation
algorithm to the 1D time series in order to detect the pause times in a reliable way. For comparison, Rhee et al. use a
threshold radius to determine whether lines between two consecutive locations are a ‘flight’ or a pause [9]. However,
Wi-Fi data involve much larger positioning errors than GPS data, in which case the radius method produces many false
classifications.

The Douglas–Peucker algorithm is a line simplification method. It recursively removes intermediate points from a
polyline that are at a distance away from the line segment connecting first and last points, using a threshold parameter
ϵ. The value of the parameter ϵ is chosen based on visual inspection of the results (see Appendix A for details). For each
1D time series, the algorithm produces a vector of change-points. To merge the two vectors we combine them in one
time-ordered vector of unique change-points (as in [24]). To avoid over-segmentation, we iterate the combined vector
and remove every change-point that follows the previous one in less than one minute. The resulting time granularity
for the detection of behavioural episodes is 1 min, which agrees with our expectation, given the overall accuracy of the
measurement system.

After the segmentation of the time series, we annotate each segment with the corresponding behavioural state (resting
or moving). To do so, we apply a linear regression to each segment in both the 1D time series. Only if the slope parameters
|βx| and |βy| of the two regression fits in both time series are below the threshold α = 0.5, we label the segment as being
stationary. Otherwise we label it as being part of a relocation move. The threshold value α = 0.5 is chosen based on
visual inspection of the results (see Appendix A for details). In Fig. 4 we show an example of the annotated movement
track, and its approximation by straight line segments.
4
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.3. Statistical model fitting

From the segmented movement tracks we measure step lengths ∆r , and movement durations t . To determine which
tatistical model is underlying the movement process we first study the displacement distribution P(∆r). People moving
ogether in groups potentially threatens the statistical independence of the displacements. To test for underlying group
tructure, we apply a form of cluster analysis (see Appendix D for details). As we do not find compelling evidence of
roups, no adjustments are made to the device selection. We fit four candidate distributions using the maximum likelihood
stimation (MLE) methods of [22,25,26] (see Appendix B for more details). We determine whether the data are better fit
y:

• The exponential distribution, with probability density function defined as:

p(x) = λ exp
(
−λ(x − a)

)
(1)

• The truncated Pareto distribution, with probability density function defined as:

p(x) = (1 − µ)/(b1−µ
− a1−µ)x−µ (2)

• The log-normal distribution, with probability density function defined as:

p(x) =
1

xσ
√
2π

exp
(
−

(log x − µ)2

2σ 2

)
(3)

• The stretched exponential distribution, with probability density function defined as:

p(x) = βλxβ−1 exp
(
−λ(xβ

− aβ )
)

(4)

where a < x < b.
The exponential distribution is an indication of normal (Brownian) diffusion. While true Lévy walk behaviour leads

o a full power law, the biologically constrained movement of humans within a bounded region can be reasonably
dentified as a truncated power law only. The log-normal distribution is a frequently reported model for describing heavy-
ailed data [9,12]. The stretched exponential provides an alternative description of heavy-tailed data [27]. The stretched
xponential provides the more convincing model, as its emergence is consistent with the random walk scheme describing
he movement process (after merging and summing segments). This process is captured by a random walker that moves
ith a random velocity for some random amount of time, and for each move chooses its velocity and flight time from
robability distribution functions h(v) and φ(t). Displacements are given by ∆r = vt . Multiplicative processes, which
nvolve the product of random variables, have been shown to give rise to stretched exponentials [27–29].

We also apply model fitting procedures to the movement durations φ(t). We test the same set of models, although
he stretched exponential has not the same conceptual basis in the case of movement durations.

For both displacement distribution P(∆r) and movement durations φ(t), we select the most appropriate model to
escribe the data using the model selection method based on Akaike’s information criterion (AIC) [30] (see Appendix B
or details).

.4. Movement characteristics

To further analyse the movement behaviour, we focus on the spatial characteristics of the movement tracks during the
elocation moves. We test the observation that during the relocation moves individuals perform walks with directional
ersistence. In random walk models, persistence in direction is expressed through autocorrelation in turning angles
etween successive movement steps. This behaviour can be modelled using a correlated random walk (CRW) [19,31].
n concordance with the CRW approach we look at the statistical distribution of relative turning angles ϕi = θi − θi−1,
here θi is the direction of movement step i. Here, movement step refers to the step taken in one time step ∆t introduced
y the proximity detection method and used for the smoothed movement tracks (described in Section 2.1). Note that we
hus measure the autocorrelation between steps within one relocation move, and not the correlation between different
elocation moves.

Another important measure to test whether the relocation moves have directional persistence is to look at the diffusion
ehaviour. Diffusion is quantified by the mean squared displacement ⟨(∆r)2⟩ = ⟨[r(t0 + t) − r(t0)]2⟩ where the brackets
...⟩ denote averaging over all starting times t0, and all movement tracks. CRWs lead to superdiffusion, i.e. diffusion for
hich ⟨(∆r)2⟩ ∼ tγ , with γ > 1, for time scales smaller than some characteristic correlation time τ . On time scales

arger than τ , CRWs converge to normal (Brownian) diffusion (γ = 1) [32]. Lévy walks on the other hand lead to genuine
uperdiffusion, i.e. diffusion for which γ > 1, on all time scales.
5
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Fig. 5. Probability distribution function (PDF) of step lengths resulting from measuring separate straight line segments (red), on semi-log scale,
together with the MLE fit of the exponential distribution, using a = 25. The data clearly follow a straight line on the semi-log scale, which suggests
the displacements are well fit by the exponential distribution. Also shown is the distribution of step lengths after merging consecutive movement
segments, and reconnecting with straight lines (blue). Both distributions are truncated at ∼ 250 m, as expected.

Table 1
Overview of the model selection results for the step lengths after merging and summing movement
segments, based on Akaike weights, using a = 25.
Model MLE parameters 95% CI ∆AIC Akaike weights

Exponential λ = 0.0114 (0.0112,0.0115) 2295 0
Truncated Pareto µ = 1.7926 (1.7916,1.7936) 6213 0
Log-normal µ = 4.3955 (4.3868,4.4041) 6345 0

σ = 0.7649 (0.7588,0.7711)
Stretched exponential λ = 0.0816 (0.0748,0.0889) 0 1

β = 0.6561 (0.6417,0.6705)

3. Results

We look at four different measures to characterise the movement: step lengths (displacements), movement durations,
ean squared displacement (MSD), and turning angles. To determine which statistics are underlying the displacements
e first look at the displacement distributions P(∆r). We use lower cutoff value a = 25, which loosely defines the value
fter which the decay starts in the empirical probability distribution.
In Fig. 5 we show the step length distribution resulting from measuring separate straight line segments (in the θc = 0◦

pproach) on semi-log scale. The data clearly follow a straight line on the semi-log scale, which suggests the displacements
re exponentially distributed. We also show the maximum likelihood estimate (MLE) fit of the exponential distribution.
n Fig. 5 we also show the step length distribution after merging consecutive movement segments, and reconnecting start
nd end points with straight lines. As expected the resulting distribution is similar, due to movements taking place in a
ircular arena. Displacements are truncated at ∼ 250 meter, which corresponds to the length size of the stadium.
In Fig. 6 we show the distribution of step lengths after merging consecutive movement segments and summing their

lengths. We show the distribution on log–log scale, together with the MLE fits of the exponential, truncated Pareto,
log-normal, and stretched exponential distributions. We select the most appropriate model using Akaike’s information
criterion (AIC). In Table 1 we show model selection results based on Akaike weights. The stretched exponential (wse = 1)
provides the best description of the data. While the Akaike weights are decisively in favour of the stretched exponential,
a visual inspection reveals that the difference in goodness-of-fit between the exponential and heavy-tailed distributions
is subtle (see Fig. 6). A visual inspection persuades that the truncated Pareto distribution is a very poor fit to the data.

The MLE values of the stretched exponential are λ = 0.082 and β = 0.66. The exponent value β = 0.66 roughly
corresponds to the theoretical value 1/2, which is the inverse of the number of variables in the multiplicative process [27].
This is based on the hypothesis that displacement ∆r = vt is the product of random variables v ∼ h(v) and t ∼ φ(t).

Next, we look at the movement duration distribution φ(t). In Fig. 7 we show the distribution of movement durations
on log–log scale, together with the MLE fits of the exponential, truncated Pareto, log-normal, and stretched exponential.
The stretched exponential is again the best fit, according to Akaike weights wse = 1, and w = 0 for all other models.

Measuring step lengths as well as movement durations allows us to evaluate average velocities during displacements
v = ∆r/t . Because the step lengths ∆r may consist of multiple segments with different velocities, ∆r/t corresponds
to an average. In Fig. 8 we show the velocity distribution h(v) together with MLE fits of the Gamma and Rayleigh
(2D Maxwell–Boltzmann) distributions. Model selection using Akaike weights shows that the Gamma distribution is the
best fit (w = 1 and w = 0 with ∆AIC = 4895). The Rayleigh (2D Maxwell–Boltzmann) distribution has
gamma rayleigh

6
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Fig. 6. Probability distribution function (PDF) of displacements after merging and summing line segments, on log–log scale, together with the MLE
fits of the exponential, truncated Pareto, log-normal, and stretched exponential distributions, using a = 25. The Akaike model selection indicates
hat the stretched exponential provides the best description of the data (see Table 1).

Fig. 7. Probability distribution function (PDF) of movement durations on log–log scale, together with the MLE fits of the exponential, truncated
Pareto, log-normal, and stretched exponential. Akaike model selection indicates that the stretched exponential provides the best fit.

Fig. 8. Probability distribution function (PDF) of the velocities. Also shown are the MLE fits of the Rayleigh (2D Maxwell–Boltzmann) distribution,
nd the Gamma distribution.

he more interesting implication, being the theoretical velocity distribution for gas particles in equilibrium (cf. [33]).
he fact that the Rayleigh distribution does not provide the most accurate description for the data is not surprising.
7
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Fig. 9. Probability distribution of the turning angles.

Fig. 10. Observed mean squared displacement (MSD) on log–log scale (blue line). The black dashed line corresponds to normal (Brownian) diffusion
γ = 1). The grey line corresponds to superdiffusion (γ = 7/4)), and is shown as a visual aid.

he Rayleigh distribution arises when the velocity vector components in two dimensions are uncorrelated, zero mean,
ormally distributed random variables. In our case, velocities are calculated as the ratio of displacement and duration,
hich are both obtained following our alternative approach, using the path segmentation procedure.
The mean velocity according to the Gamma is ⟨v⟩ = k/β = 0.265, where k and β are shape and rate parameters.
In Fig. 9 we show the probability distribution of turning angles. We see a sharp peak at zero which indicates the high

degree of correlation in subsequent movement steps [19]. The autocorrelation in turning angles shows that individuals
move with directional persistence during relocation moves. The movement tracks could thus be described as CRWs
interrupted by rests.

In Fig. 10 we show the MSD ⟨(∆r)2⟩. Up to t ∼ 102 (seconds) the MSD approximates the line with slope γ = 7/4 (solid
grey), then decreases to γ < 1 and shows truncation behaviour. The superdiffusion indicated by the slope in the first part
of the MSD is consistent with displacements being described by CRWs. CRWs are known to give rise to superdiffusion up
to a characteristic correlation time (e.g. [32], see also Appendix C). The transition of the MSD from values γ > 1 to below
1 occurs somewhere in the region 100 < t < 200 seconds. This truncation time can be related to the time it takes to
cross the stadium at moderate walking speed v ∼ 1 m·s−1. Obviously, directional persistence and superdiffusion cannot
be maintained on scales larger than the size of the stadium.

Note that the time range in which truncation occurs in the MSD is much smaller than the time range of the measured
displacements (as shown in Fig. 6). The measured displacements result from grouping time steps into relocation moves of
variable duration, and are in the range 70 < t < 11320 seconds (see Fig. 7). This explains why the observed superdiffusion
in the MSD does not affect the displacement distributions, as movement episodes are measured on time scales that stretch
far beyond the region where the transition occurs from superdiffusion to truncation in the MSD.
8
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. Discussion

We have shown that motion patterns of dance event visitors are characterised by intermittency. Movement patterns
re characterised by periods of rest, alternating with periods of movement. We have exploited this property of the motion
y defining displacements as the distance travelled between two periods of rest. During the relocation phase people move
ith directional persistence, as evidenced by the turning angle analysis. The analysis of the MSD confirms that people
ove with directional persistence, as the MSD starts out in the superdiffusive regime until it shows truncation behaviour.
hrough the finite pedestrian velocity this truncation time can be roughly related to the size of the stadium.
We have shown that after merging and summing the segments in-between pause times, the range of step lengths

reatly increases. We find that, after summing segments, heavy-tailed distributions provide better descriptions of the
isplacements than the exponential distribution. Visual inspection reveals however that the difference in goodness-of-fit
etween the different models is subtle. We find that the stretched exponential provides the more convincing model, as
ts emergence is consistent with the random walk scheme describing the movement process. This result is in agreement
ith the simple stochastic model proposed in Gallotti et al. (2016) [29] to describe various mobility patterns.
Despite our alternative approach to measure displacements, we find no evidence of Lévy walks. This is in contrast

o several other studies of human movement behaviour [9–11]. A reasonable explanation is that the stadium does not
nvite displacements much larger than the size of the building, as this results in circular trajectories. This is in contrast
ith Rhee et al. who analyse GPS traces collected in outdoor settings typically on the scale of tens of kilometers [9]. The
ifference in results supports the idea that scale and structure of the environment influence the movement process that
rises. For example, step length distributions may simply reflect spatial distances between various visited locations. This
uggests that specific movement processes (such as Lévy walks) emerge from the interaction between the animal and
nvironment, rather than from evolutionary adaptation of movement behaviour [3,34].
An important difference with the studies of Raichlen et al. (2014) [10] and Reynolds et al. (2018) [11] is that, in our

ase, we assume that dance event visitors are not (consciously) foraging. Also, there would be no clear benefit of walking
ery large distances during a dance event.
Despite the assumption that dance event visitors are not foraging we do find that displacements tend to become heavy-

ailed, and that movement patterns have characteristics such as intermittence and persistence. All these characteristics
ave been found in many other animal movement studies and have been identified as optimal search strategies. These
ommonalities may point to more general mechanisms underlying different kinds of movement behaviour [35]. We
onclude that clarifying these issues merits further research.

RediT authorship contribution statement

Philip Rutten: Conceptualization, Methodology, Software, Visualization, Writing - original draft, Writing - review
editing. Michael H. Lees: Supervision, Writing - review & editing. Sander Klous: Project administration, Funding

cquisition, Writing - review & editing. Peter M.A. Sloot: Supervision, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

cknowledgement

We acknowledge the financial support of the Netherlands eScience Center, Netherlands, under grant number 027.015.00

ppendix A. Path segmentation and annotation

.1. Path segmentation

The Douglas–Peucker algorithm is a line simplification algorithm that uses a threshold parameter ϵ. Here we illustrate
he effect of different choices for the parameter value on the path segmentation. In Fig. 11(a–c) we show path
egmentation results for the example movement track, for parameter values ϵ = (5, 10, 15). We find that ϵ = 10
roduces the best result. In Fig. 12 we show the resulting probability distributions of the displacements, measured using
ur alternative approach. We see that the results are robust against variation in ϵ. The stretched exponential distribution
rovides the best model for all three values of ϵ, according to model selection based on Akaike weights. In Table 2 we

how MLEs of the stretched exponential, for different values of ϵ.

9
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Fig. 11. Example track decomposed in two 1D time series, together with the Douglas–Peucker segmentation, using threshold parameter values (a)
ϵ = 5, (b) ϵ = 10, (c) ϵ = 15. The dotted vertical lines represent the boundaries between the segments.

Fig. 12. Probability distribution function (PDF) of the displacements, for different values of ϵ.
10
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Table 2
Overview of fitting results using different values of ϵ. Shown are the MLEs
for the stretched exponential, which provided the best model for the data,
according to model selection based on Akaike weights.
Parameter value (∆r)max λ β

ϵ = 5 3099.6 0.1089 0.6234
ϵ = 10 4586.5 0.0816 0.6561
ϵ = 15 4452.4 0.0591 0.6970

Fig. 13. Example track with annotated waiting times (green), and displacements (red), using threshold parameter values (a) α = 0.1, (b) α = 0.5,
c) α = 1.

.2. Annotation of behavioural states

After the segmentation of the tracks, we annotate each segment with the corresponding behavioural state (resting or
oving). To do so, we apply a linear regression to each segment in both the 1D time series, and use a threshold value

or the slope α = 0.5. Here we illustrate the effect of different choices for α on the annotation result. In Fig. 13(a–c) we
how path segmentation results for the example movement track, for parameter values α = (0.1, 0.5, 1). We find that

α = 0.5 produces the best result. In Fig. 14 we show the resulting probability distributions of the displacements. We
see that the results are robust against variation in α. The stretched exponential distribution provides the best model for
all three values of α, according to model selection based on Akaike weights. In Table 3 we show MLEs of the stretched
exponential, for different values of α.
11
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r

Fig. 14. Probability distribution function (PDF) of the displacements, for different values of α.

Table 3
Overview of fitting results using different values of α. Shown are the MLEs
for the stretched exponential, which provided the best model for the data,
according to model selection based on Akaike weights.
Parameter value (∆r)max λ β

α = 0.1 4599.7 0.0833 0.6317
α = 0.5 4586.5 0.0816 0.6561
α = 1.0 4599.7 0.0801 0.6751

Appendix B. Statistical methods of model comparison

We use statistical methods of Clauset et al. [25] and Edwards et al. [22] for fitting the distributions. We benchmark
esults against the Python powerlaw package [26], which has implemented the methods from [25].

B.1. Maximum likelihood estimation

The maximum likelihood estimate (MLE) of the parameter λ of the exponential distribution p(x) = λe−λ(x−a) is given
by

λ̂ = 1
/( n∑

i=1

xi/n − a
)

(5)

where n is the number of data points, and a is the lower bound of the fitting range. In this research a is loosely determined
as the value after which the decay starts in the pdf.

There are no analytical solutions for the MLEs of the parameters in the log-normal distribution, and the stretched
exponential distribution. In these cases we numerically minimise the negative log-likelihood function

L(θ ) = −

n∑
i=1

log p(xi
⏐⏐θ ) (6)

where θ is a vector of parameters in the model. The MLE of the parameter µ in the truncated Pareto distribution is given
by the numerical solution of the equation

1
n

n∑
i=1

log xi =
1

µ − 1
+

b1−µ log b − a1−µ log a
b1−µ − a1−µ

(7)

For both numerical minimisation and solution we use Python library functions (following [26]).

B.2. Confidence intervals of estimated parameters

To compute confidence intervals we use the likelihood profile method [36]. The method compares the likelihood of
the MLE of a parameter θ with other values of that parameter. According to statistical theory

R = 2
[
L(θ ) − L(θ )

]
(8)
mle

12
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Fig. 15. Movement trajectories of 5 simulated correlated random walkers.

has a chi-square distribution with one degree of freedom. We can find 95% confidence interval boundaries by using the
fact that Pr{χ2 < 3.84} = 0.95, and numerically solving L(θ ) − L(θmle) = 1.92. For models with two parameters we
erform the test for each parameter separately. We systematically vary the parameter of interest, and at each instance
ompute the value for the other parameter that maximises the likelihood at that point.

.3. Akaike model selection

To compute Akaike weights we need the Akaike Information Criterion (AIC)

AIC = 2L(θmle) + 2K (9)

or which we require the value of the negative log-likelihood function at the maximum (MLE), and where K is the number
f parameters to be estimated [22,30]. The AIC differences are

∆i = AICi − AICmin (10)

here AICmin is the AIC of the model with the minimum AIC, which is considered as the best model. The Akaike weights
re give by

wi =
exp (− 1

2∆i)∑M
m=1 exp (− 1

2∆m)
(11)

here M is the set of models to be compared.

ppendix C. Mean square displacement

To show how correlated random walks within a bounded area result in truncated superdiffusion, we run a simple
imulation. We simulate N = 1000 correlated random walkers for T = 200 time steps. At each time step the individuals
make a step of length 10 m, which corresponds to time steps of ∆t = 10 seconds, and a constant velocity of 1 m·s−1. The
correlated random walkers start at random positions and random directions in a rectangular area of 240 × 200 meter,
hich roughly corresponds to the size of the Arena stadium, and at each step we draw a turning angle from the von
ises distribution with mean µ = 0 and concentration parameter κ = 4 [20]. If an individual’s next step ends outside of

he rectangular area, the individual remains at the current position and resets its orientation in a new random direction
see Fig. 15 for examples). In Fig. 16 below we see that this simple simulation reproduces some of the characteristics
f the empirical MSD shown in Fig. 10 (main text), such as the initial slope of approximately γ = 7/4, and the gradual
runcation.

ppendix D. Statistical independence and group structure

We do not expect that people are going to a dance event alone, but together with friends. Groups of friends moving
ogether during the event will leave similar movement traces, which threatens the statistical independence of the
ovement data. To test for underlying group structure we apply a cursory form of cluster analysis. The most important
spect of possible group behaviour in our context is the persistent physical proximity of individuals. Therefore, we
epeatedly sort individuals based on their pairwise proximity (using a threshold distance r = 1.5 m), creating a sequence
f contact networks. We can then search for groups by applying some form of community detection, as is done in various
13
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Fig. 16. (a) Empirical MSD on log–log scale (blue line) (same as Fig. 10 and shown here to facilitate comparison). (b) MSD of simulated correlated
andom walkers (blue line). In both figures the black dashed line corresponds to normal (Brownian) diffusion (proportional to tγ , where γ = 1).
he solid grey line corresponds to γ = 7/4 and is shown as a visual aid.

Fig. 17. Movement tracks of core members of potential social groups. The group in (a) has 9 core members, and the group in (b) has 4 members.
The movement tracks show similarities but also considerable divergence.

social network studies. Our approach here is similar to the approach presented in Sekara et al. (2016) [37]. If we create
contact networks within a sufficiently short time window (called ‘time slice’), individuals are clustered in many small
connected components. Thus, within the time slices, communities can be directly observed, which makes more involved
community detection algorithms unnecessary.

We define a social group as a community that persists across the time slices. We discard all communities of size < 3
i.e. pairs of individuals do not count as a group). Communities are matched using single-linkage clustering, a form of
gglomerative hierarchical clustering. For the matching, we use a distance measure d(ci, cj) = 1 − J(ci, cj), where J is the

Jaccard similarity between groups i and j. The desired result is a collection of clusters consisting of communities that are
linked across the time slices. To extract the core members of the group we look for individuals that are present in at least
50% of the lifetime of the community. We assess the results with a graphical check of the group member’s movement
tracks.

We experiment with different numbers of time slices and time steps, and find only two potential groups. The results
we show here are from taking 20 time slices at a regular time interval of 16 min 40 s (1000 s), starting at 20:06:57,
and ending at 01:23:37. We partition the clustering using a threshold distance d = 0.5 and look at communities that are
present in at least 3/4 of the time slices. In Fig. 17 we show the movement tracks of the core members of the groups. Note
that Fig. 17(a) shows 9 movement tracks, which are in physical proximity mostly when not moving. In both Fig. 17(a)
14
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nd (b) movement tracks show similarities but also considerable divergence. Although these results are interesting, we
o not find them strong enough to make adjustments to the device selection.
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