132 research outputs found

    Evaluation of the cerebrovascular reactivity in patients with Moyamoya Angiopathy by use of breath-hold fMRI: investigation of voxel-wise hemodynamic delay correction in comparison to [15^{15}O]water PET

    Full text link
    PURPOSE: Patients with Moyamoya Angiopathy (MMA) require hemodynamic assessment to evaluate the risk of stroke. Hemodynamic evaluation by use of breath-hold-triggered fMRI (bh-fMRI) was proposed as a readily available alternative to the diagnostic standard [15^{15}O]water PET. Recent studies suggest voxel-wise hemodynamic delay correction in hypercapnia-triggered fMRI. The aim of this study was to evaluate the effect of delay correction of bh-fMRI in patients with MMA and to compare the results with [15^{15}O]water PET. METHODS: bh-fMRI data sets of 22 patients with MMA were evaluated without and with voxel-wise delay correction within different shift ranges and compared to the corresponding [15^{15}O]water PET data sets. The effects were evaluated combined and in subgroups of data sets with most severely impaired CVR (apparent steal phenomenon), data sets with territorial time delay, and data sets with neither steal phenomenon nor delay between vascular territories. RESULTS: The study revealed a high mean cross-correlation (r = 0.79, p < 0.001) between bh-fMRI and [15^{15}O]water PET. The correlation was strongly dependent on the choice of the shift range. Overall, no shift range revealed a significantly improved correlation between bh-fMRI and [15^{15}O]water PET compared to the correlation without delay correction. Delay correction within shift ranges with positive high high cutoff revealed a lower agreement between bh-fMRI and PET overall and in all subgroups. CONCLUSION: Voxel-wise delay correction, in particular with shift ranges with high cutoff, should be used critically as it can lead to false-negative results in regions with impaired CVR and a lower correlation to the diagnostic standard [15^{15}O]water PET

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate Îł\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    The three-prong method: a novel assessment of residual stress in laser powder bed fusion

    Get PDF
    <p><b>Boxplots of quantitative parameters</b> included <b>a)</b> ratio of N-acetylaspartate and N-acetylaspartylglutamate (NAA) to creatine and phosphocreatine (Cr) both for chemical shift imaging (CSI) and single voxel (SV) measurements, <b>b)</b> ratio of choline containing compounds (Cho) to Cr both for CSI and SV, <b>c)</b> myelin water fraction (MWF), <b>d)</b> magnetization transfer ratio (MTR), <b>e)</b> quantitative susceptibility mapping (QSM), and <b>f)</b> R2*. Parameters were measured in frontal white matter (WM) and two parameters within the cortico-spinal tract (CST): at the level of the posterior limb of internal capsule (PLIC) and at the level of the centrum semiovale (CS), see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0167274#pone.0167274.g001" target="_blank">Fig 1</a>.</p

    Belle II Pixel Detector Commissioning and Operational Experience

    Get PDF

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    Proton CSI without solvent suppression with strongly reduced field gradient related sideband artifacts

    No full text
    Object Non-water-suppressed MRSI (magnetic resonance spectroscopy imaging) offers a number of advantages; however, spectra are hampered by the sideband artifacts. The origin of those is associated with the vibration of the gradient coils, and most of the sidebands are assumed to be related to the crusher gradients. The aim was to examine the dependency between the physical direction of the crushers and the sidebands. Additionally, the possibilities of optimization of the point resolved spectroscopy sequence (PRESS) were investigated. Materials and methods For the assessment of the sidebands, spectra at short echo time (TE) were collected at 3 T from standard water phantom. A homemade agar phantom was used to test the optimal strength of the crusher gradients. Optimized PRESS sequence was tested in vivo. Results The greatest sidebands were found to be associated with the crusher gradient in x-direction. Agar phantom and in vivo measurements revealed that reduction of the crusher’s strength to 5 mT/m could provide a significant minimization of the sidebands without raising the unwanted signals produced by volume selection. Conclusion This study demonstrates that crusher gradients in different directions produce a unique pattern of the sidebands. Moreover, optimization of the strength of crushers has been found to decrease sidebands so, the remaining part could be reduced in postprocessing
    • 

    corecore