57 research outputs found
Flux and Seasonality of Dissolved Organic Matter From the Northern Dvina (Severnaya Dvina) River, Russia
PanâArctic riverine dissolved organic carbon (DOC) fluxes represent a major transfer of carbon from landâtoâocean, and past scaling estimates have been predominantly derived from the six major Arctic rivers. However, smaller watersheds are constrained to northern highâlatitude regions and, particularly with respect to the Eurasian Arctic, have received little attention. In this study, we evaluated the concentration of DOC and composition of dissolved organic matter (DOM) via optical parameters, biomarkers (lignin phenols), and ultrahigh resolution mass spectrometry in the Northern Dvina River (a midsized highâlatitude constrained river). Elevated DOC, lignin concentrations, and aromatic DOM indicators were observed throughout the year in comparison to the major Arctic rivers with seasonality exhibiting a clear spring freshet and also some years a secondary pulse in the autumn concurrent with the onset of freezing. Chromophoric DOM absorbance at a350 was strongly correlated to DOC and lignin across the hydrograph; however, the relationships did not fit previous models derived from the six major Arctic rivers. Updated DOC and lignin fluxes were derived for the panâArctic watershed by scaling from the Northern Dvina resulting in increased DOC and lignin fluxes (50 Tg yrâ1 and 216 Gg yrâ1, respectively) compared to past estimates. This leads to a reduction in the residence time for terrestrial carbon in the Arctic Ocean (0.5 to 1.8 years). These findings suggest that constrained northern highâlatitude rivers are underrepresented in models of fluxes based from the six largest Arctic rivers with important ramifications for the export and fate of terrestrial carbon in the Arctic Ocean
Multi-Line Geometry of Qubit-Qutrit and Higher-Order Pauli Operators
The commutation relations of the generalized Pauli operators of a
qubit-qutrit system are discussed in the newly established graph-theoretic and
finite-geometrical settings. The dual of the Pauli graph of this system is
found to be isomorphic to the projective line over the product ring Z2xZ3. A
"peculiar" feature in comparison with two-qubits is that two distinct
points/operators can be joined by more than one line. The multi-line property
is shown to be also present in the graphs/geometries characterizing two-qutrit
and three-qubit Pauli operators' space and surmised to be exhibited by any
other higher-level quantum system.Comment: 8 pages, 6 figures. International Journal of Theoretical Physics
(2007) accept\'
Selection of antigenically advanced variants of seasonal influenza viruses.
Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014-2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.This work was supported by the Bill & Melinda Gates Foundation Global Health Grant OPPGH5383; National Institute of Allergy and Infectious Diseases (NIAID) Public Health Service research grants (USA); ERATO (Japan Science and Technology Agency); the Center for Research on Influenza Pathogenesis (CRIP) funded by the NIAID Contracts HHSN266200700010C and HHSN27 2201400008C; the Japan Initiative for Global Research Network on Infectious Diseases; Grants-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; Grants-in-Aid from the Ministry of Health, Labour and Welfare, Japan; grants from the Strategic Basic Research Program of the Japan Science and Technology Agency; and by the Advanced Research & Development Programs for Medical Innovation from the Japan Agency for Medical Research and Development (AMED). C.A.R. was supported by a University Research Fellowship from the Royal Society. The authors acknowledge a Netherlands Organisation for Scientific Research (NWO) VICI grant, European Union (EU) FP7 programs EMPERIE (223498) and ANTIGONE (278976); Human Frontier Science Program (HFSP) program grant P0050/2008; Wellcome 087982AIA; and NIH Director's Pioneer Award DP1-OD000490-01. D.F.B and D.J.S. acknowledge CamGrid, the University of Cambridge distributed computer system. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmicrobiol.2016.5
Global circulation patterns of seasonal influenza viruses vary with antigenic drift.
Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.T.B.
was
supported
by
a
Newton
International
Fellowship
from
the
Royal
Society
and
through
NIH
U54
GM111274.
S.R.
was
supported
by
MRC
(UK,
Project
MR/J008761/1),
Wellcome
Trust
(UK,
Project
093488/Z/10/Z),
Fogarty
International
Centre
(USA,
R01
TW008246â01),
DHS
(USA,
RAPIDD
program),
NIGMS
(USA,
MIDAS
U01
GM110721â01)
and
NIHR
(UK,
Health
Protection
Research
Unit
funding).
The
Melbourne
WHO
Collaborating
Centre
for
Reference
and
Research
on
Influenza
was
supported
by
the
Australian
Government
Department
of
Health
and
thanks
N.
Komadina
and
Y.âM.
Deng.
The
Atlanta
WHO
Collaborating
Center
for
Surveillance,
Epidemiology
and
Control
of
Influenza
was
supported
by
the
U.S.
Department
of
13
Health
and
Human
Services.
NIV
thanks
A.C.
Mishra,
M.
ChawlaâSarkar,
A.M.
Abraham,
D.
Biswas,
S.
Shrikhande,
AnuKumar
B,
and
A.
Jain.
Influenza
surveillance
in
India
was
expanded,
in
part,
through
US
Cooperative
Agreements
(5U50C1024407
and
U51IP000333)
and
by
the
Indian
Council
of
Medical
Research.
M.A.S.
was
supported
through
NSF
DMS
1264153
and
NIH
R01
AI
107034.
Work
of
the
WHO
Collaborating
Centre
for
Reference
and
Research
on
Influenza
at
the
MRC
National
Institute
for
Medical
Research
was
supported
by
U117512723.
P.L.,
A.R.
&
M.A.S
were
supported
by
EU
Seventh
Framework
Programme
[FP7/2007â2013]
under
Grant
Agreement
no.
278433-ÂâPREDEMICS
and
ERC
Grant
agreement
no.
260864.
C.A.R.
was
supported
by
a
University
Research
Fellowship
from
the
Royal
Society.This is the author accepted manuscript. It is currently under infinite embargo pending publication of the final version
Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009-2010 Northern Hemisphere season
Influenza vaccines form an important component of the global response against infections and subsequent illness caused in man by influenza viruses. Twice a year, in February and September, the World Health Organisation through its Global Influenza Surveillance Network (GISN), recommends appropriate influenza viruses to be included in the seasonal influenza vaccine for the upcoming Northern and Southern Hemisphere winters. This recommendation is based on the latest data generated from many sources and the availability of viruses that are suitable for vaccine manufacture. This article gives a summary of the data and background to the recommendations for the 2009-2010 Northern Hemisphere influenza vaccine formulation. © 2009 Elsevier Ltd.Link_to_subscribed_fulltex
Data from: Global circulation patterns of seasonal influenza viruses vary with antigenic drift
Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized1, 2, 3, 4, 5, 6, 7, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour
- âŠ