90 research outputs found

    Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios

    Get PDF
    The present study investigates the response of the high-latitude carbon cycle to changes in atmospheric greenhouse gas (GHG) concentrations in idealized climate change scenarios. To this end we use an adapted version of JSBACH – the land surface component of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) – that accounts for the organic matter stored in the permafrost-affected soils of the high northern latitudes. The model is run under different climate scenarios that assume an increase in GHG concentrations, based on the Shared Socioeconomic Pathway 5 and the Representative Concentration Pathway 8.5, which peaks in the years 2025, 2050, 2075 or 2100, respectively. The peaks are followed by a decrease in atmospheric GHGs that returns the concentrations to the levels at the beginning of the 21st century, reversing the imposed climate change. We show that the soil CO2 emissions exhibit an almost linear dependence on the global mean surface temperatures that are simulated for the different climate scenarios. Here, each degree of warming increases the fluxes by, very roughly, 50 % of their initial value, while each degree of cooling decreases them correspondingly. However, the linear dependence does not mean that the processes governing the soil CO2 emissions are fully reversible on short timescales but rather that two strongly hysteretic factors offset each other – namely the net primary productivity and the availability of formerly frozen soil organic matter. In contrast, the soil methane emissions show a less pronounced increase with rising temperatures, and they are consistently lower after the peak in the GHG concentrations than prior to it. Here, the net fluxes could even become negative, and we find that methane emissions will play only a minor role in the northern high-latitude contribution to global warming, even when considering the high global warming potential of the gas. Finally, we find that at a global mean temperature of roughly 1.75 K (±0.5 K) above pre-industrial levels the high-latitude ecosystem turns from a CO2 sink into a source of atmospheric carbon, with the net fluxes into the atmosphere increasing substantially with rising atmospheric GHG concentrations. This is very different from scenario simulations with the standard version of the MPI-ESM, in which the region continues to take up atmospheric CO2 throughout the entire 21st century, confirming that the omission of permafrost-related processes and the organic matter stored in the frozen soils leads to a fundamental misrepresentation of the carbon dynamics in the Arctic

    Pathway-dependent fate of permafrost region carbon

    Get PDF
    Permafrost soils in the high northern latitudes contain a substantial amount of carbon which is not decomposed due to frozen conditions. Climate change will lead to a thawing of at least part of the permafrost, implying that the stored carbon will become accessible to decomposition and be released to the atmosphere. We use a land surface model to quantify the amount of carbon released up until 2300 and determine the net carbon balance of the northern hemisphere permafrost region under climate warming following the RCP scenarios 2.6, 4.5, and 8.5. Here we show for the first time that the net carbon balance of the permafrost region is not just strongly dependent on the overall warming, but also on the CO2 concentration pathway. As a result moderate warming scenarios may counterintuitively lead to lower net carbon emissions from the permafrost region than low warming scenarios

    Eurasian perspective

    Get PDF
    Reproducing the tree cover changes throughout the Holocene is a challenge for land surface–atmosphere models. Here, results of a transient Holocene simulation of the coupled climate–carbon cycle model, CLIMBER2-LPJ, driven by changes in orbital forcing, are compared with pollen data and pollen-based reconstructions for several regions of Eurasia in terms of changes in tree fraction. The decline in tree fraction in the high latitudes suggested by data and model simulations is driven by a decrease in summer temperature over the Holocene. The cooler and drier trend at the eastern side of the Eurasian continent, in Mongolia and China, also led to a decrease in tree cover in both model and data. In contrast, the Holocene trend towards a cooler climate in the continental interior (Kazakhstan) is accompanied by an increase in woody cover. There a relatively small reduction in precipitation was likely compensated by lower evapotranspiration in comparison to the monsoon-affected regions. In general the model-data comparison demonstrates that climate-driven changes during the Holocene result in a non-homogeneous pattern of tree cover change across the Eurasian continent. For the Eifel region in Germany, the model suggests a relatively moist and cool climate and dense tree cover. The Holzmaar pollen record agrees with the model for the intervals 8–3 ka and 1.7–1.3 ka BP, but suggests great reduction of the tree cover 3–2 ka and after 1.3 ka BP, when highly developed settlements and agriculture spread in the region

    Sensitivity of Arctic CH4_4 emissions to landscape wetness diminished by atmospheric feedbacks

    Get PDF
    Simulations using land surface models suggest future increases in Arctic methane emissions to be limited by the thaw-induced drying of permafrost landscapes. Here we use the Max Planck Institute Earth System Model to show that this constraint may be weaker than previously thought owing to compensatory atmospheric feedbacks. In two sets of extreme scenario simulations, a modification of the permafrost hydrology resulted in diverging hydroclimatic trajectories that, however, led to comparable methane fluxes. While a wet Arctic showed almost twice the wetland area compared with an increasingly dry Arctic, the latter featured greater substrate availability due to higher temperatures resulting from reduced evaporation, diminished cloudiness and more surface solar radiation. Given the limitations of present-day models and the potential model dependence of the atmospheric response, our results provide merely a qualitative estimation of these effects, but they suggest that atmospheric feedbacks play an important role in shaping future Arctic methane emissions

    Long-term deglacial permafrost carbon dynamics in MPI-ESM

    Get PDF
    We have developed a new module to calculate soil organic carbon (SOC) accumulation in perennially frozen ground in the land surface model JSBACH. Running this offline version of MPI-ESM we have modelled long-term permafrost carbon accumulation and release from the Last Glacial Maximum (LGM) to the pre-industrial (PI) age. Our simulated near-surface PI permafrost extent of 16.9 × 106 km2 is close to observational estimates. Glacial boundary conditions, especially ice sheet coverage, result in profoundly different spatial patterns of glacial permafrost extent. Deglacial warming leads to large-scale changes in soil temperatures, manifested in permafrost disappearance in southerly regions, and permafrost aggregation in formerly glaciated grid cells. In contrast to the large spatial shift in simulated permafrost occurrence, we infer an only moderate increase in total LGM permafrost area (18.3 × 106 km2) – together with pronounced changes in the depth of seasonal thaw. Earlier empirical reconstructions suggest a larger spread of permafrost towards more southerly regions under glacial conditions, but with a highly uncertain extent of non-continuous permafrost. Compared to a control simulation without describing the transport of SOC into perennially frozen ground, the implementation of our newly developed module for simulating permafrost SOC accumulation leads to a doubling of simulated LGM permafrost SOC storage (amounting to a total of ∼ 150 PgC). Despite LGM temperatures favouring a larger permafrost extent, simulated cold glacial temperatures – together with low precipitation and low CO2 levels – limit vegetation productivity and therefore prevent a larger glacial SOC build-up in our model. Changes in physical and biogeochemical boundary conditions during deglacial warming lead to an increase in mineral SOC storage towards the Holocene (168 PgC at PI), which is below observational estimates (575 PgC in continuous and discontinuous permafrost). Additional model experiments clarified the sensitivity of simulated SOC storage to model parameters, affecting long-term soil carbon respiration rates and simulated ALDs. Rather than a steady increase in carbon release from the LGM to PI as a consequence of deglacial permafrost degradation, our results suggest alternating phases of soil carbon accumulation and loss as an effect of dynamic changes in permafrost extent, ALDs, soil litter input, and heterotrophic respiration

    Deglacial permafrost carbon dynamics in MPI-ESM

    Get PDF
    We have developed a new module to calculate soil organic carbon (SOC) accumulation in perennially frozen ground in the land surface model JSBACH. Running this offline version of MPI-ESM we have modelled permafrost carbon accumulation and release from the Last Glacial Maximum (LGM) to the Pre-industrial (PI). Our simulated near-surface PI permafrost extent of 16.9Miokm2 is close to observational evidence. Glacial boundary conditions, especially ice sheet coverage, result in profoundly different spatial patterns of glacial permafrost extent. Deglacial warming leads to large-scale changes in soil temperatures, manifested in permafrost disappearance in southerly regions, and permafrost aggregation in formerly glaciated grid cells. In contrast to the large spatial shift in simulated permafrost occurrence, we infer an only moderate increase of total LGM permafrost area (18.3Miokm2) – together with pronounced changes in the depth of seasonal thaw. Reconstructions suggest a larger spread of glacial permafrost towards more southerly regions, but with a highly uncertain extent of non-continuous permafrost. Compared to a control simulation without describing the transport of SOC into perennially frozen ground, the implementation of our newly developed module for simulating permafrost SOC accumulation leads to a doubling of simulated LGM permafrost SOC storage (amounting to a total of ~150PgC). Despite LGM temperatures favouring a larger permafrost extent, simulated cold glacial temperatures – together with low precipitation and low CO2 levels – limit vegetation productivity and therefore prevent a larger glacial SOC build-up in our model. Changes in physical and biogeochemical boundary conditions during deglacial warming lead to an increase in mineral SOC storage towards the Holocene (168PgC at PI), which is below observational estimates (575PgC in continuous and discontinuous permafrost). Additional model experiments clarified the sensitivity of simulated SOC storage to model parameters, affecting long-term soil carbon respiration rates and simulated active layer depths. Rather than a steady increase in carbon release from the LGM to PI as a consequence of deglacial permafrost degradation, our results suggest alternating phases of soil carbon accumulation and loss as an effect of dynamic changes in permafrost extent, active layer depths, soil litter input, and heterotrophic respiration

    The deglacial forest conundrum

    Get PDF
    How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict

    Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for <i>Homo sapiens</i> expansion

    Get PDF
    Archaeological findings, numerical human dispersal models and genome analyses suggest several time windows in the past 200 kyr (thousands of years ago) when anatomically modern humans (AMH) dispersed out of Africa into the Levant and/or Arabia. From close to the key hominin site of Omo-Kibish, we provide near continuous proxy evidence for environmental changes in lake sediment cores from the Chew Bahir basin, south Ethiopia. The data show highly variable hydroclimate conditions from 116 to 66 kyr BP with rapid shifts from very wet to extreme aridity. The wet phases coincide with the timing of the North African Humid Periods during MIS5, as defined by Nile discharge records from the eastern Mediterranean. The subsequent record at Chew Bahir suggests stable regional hydrological setting between 58 and 32 kyr (MIS4 and 3), which facilitated the development of more habitable ecosystems, albeit in generally dry climatic conditions. This shift, from more to less variable hydroclimate, may help account for the timing of later dispersal events of AMH out of Africa

    HIMMELI v1.0 : HelsinkI Model of MEthane buiLd-up and emIssion for peatlands

    Get PDF
    Wetlands are one of the most significant natural sources of methane (CH4) to the atmosphere. They emit CH4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH4, in addition to carbon dioxide (CO2). Production of CH4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH4 emissions are thus needed for upscaling observations to estimate present CH4 emissions and for producing scenarios of future atmospheric CH4 concentrations. Aiming at a CH4 model that can be added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI) of aerenchymatous peat-land vegetation, and water table depth (WTD), it simulates the concentrations and transport of CH4, CO2, and oxygen (O-2) in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness), and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1) the model is flexible and robust and thus suitable for different environments; (2) the simulated CH4 emissions largely depend on the prescribed rate of anoxic respiration; (3) the sensitivity of the total CH4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular, the O-2 concentrations that affect the CH4 production and oxidation rates; (4) with given input respiration, the peat column description does not significantly affect the simulated CH4 emissions in this model version.Peer reviewe
    • …
    corecore