6,110 research outputs found

    Heavy Fermions and Quantum Phase Transitions

    Full text link
    Quantum phase transitions arise in many-body systems due to competing interactions that promote rivaling ground states. Recent years have seen the identification of continuous quantum phase transitions, or quantum critical points, in a host of antiferromagnetic heavy-fermion compounds. Studies of the interplay between the various effects have revealed new classes of quantum critical points, and are uncovering a plethora of new quantum phases. At the same time, quantum criticality has provided fresh insights into the electronic, magnetic, and superconducting properties of the heavy-fermion metals. We review these developments, discuss the open issues, and outline some directions for future research.Comment: review article, 26 pages, 4 figure

    HSV-2- and HIV-1- permissive cell lines co-infected by HSV-2 and HIV-1 co-replicate HSV-2 and HIV-1 without production of HSV-2/HIV-1 pseudotype particles

    Get PDF
    BACKGROUND: Herpes simplex virus type 2 (HSV-2) is a major cofactor of human immunodeficiency virus type 1 (HIV-1) sexual acquisition and transmission. In the present study, we investigated whether HIV-1 and HSV-2 may interact at the cellular level by forming HIV-1 hybrid virions pseudotyped with HSV-2 envelope glycoproteins, as was previously reported for HSV type 1. METHODS: We evaluated in vitro the production of HSV-2/HIV-1 pseudotypes in mononuclear CEM cells and epithelial HT29 and P4P cells. We analyzed the incorporation into the HIV-1 membrane of HSV-2 gB and gD, two major HSV-2 glycoproteins required for HSV-2 fusion with the cell membrane, in co-infected cells and in HIV-1-infected P4P cells transfected by plasmids coding for gB or gD. RESULTS: We show that HSV-2 and HIV-1 co-replicated in dually infected cells, and gB and gD were co-localized with gp160. However, HIV-1 particles, produced in HIV-1-infected cells expressing gB or gD after transfection or HSV-2 superinfection, did not incorporate either gB or gD in the viral membrane, and did not have the capacity to infect cells normally non-permissive for HIV-1, such as epithelial cells. CONCLUSION: Our results do not support the hypothesis of HSV-2/HIV-1 pseudotype formation and involvement in the synergistic genital interactions between HIV-1 and HSV-2

    Epitaxial growth of FeSe0.5_{0.5}Te0.5_{0.5} thin films on CaF2_2 substrates with high critical current density

    Full text link
    In-situ epitaxial growth of FeSe0.5_{0.5}Te0.5_{0.5} thin films is demonstrated on a non-oxide substrate CaF2_2. Structural analysis reveals that compressive stress is moderately added to 36-nm thick FeSe0.5_{0.5}Te0.5_{0.5}, which pushes up the critical temperature above 15 K, showing higher values than that of bulk crystals. Critical current density at TT = 4.5 K reaches 5.9 x 104^4 Acm2^{-2} at μ0H\mu_0H = 10 T, and 4.2 x 104^4 Acm2^{-2} at μ0H\mu_0H = 14 T. These results indicate that fluoride substrates have high potential for the growth of iron-based superconductors in comparison with popular oxide substrates.Comment: 9 pages, 3 figures, to be published in Applied Physics Express 4, 053101 (2011

    A gate-variable spin current demultiplexer based on graphene

    Full text link
    Spintronics, which utilizes spin as information carrier, is a promising solution for nonvolatile memory and low-power computing in the post-Moore era. An important challenge is to realize long distance spin transport, together with efficient manipulation of spin current for novel logic-processing applications. Here, we describe a gate-variable spin current demultiplexer (GSDM) based on graphene, serving as a fundamental building block of reconfigurable spin current logic circuits. The concept relies on electrical gating of carrier density dependent conductivity and spin diffusion length in graphene. As a demo, GSDM is realized for both single-layer and bilayer graphene. The distribution and propagation of spin current in the two branches of GSDM depend on spin relaxation characteristics of graphene. Compared with Elliot-Yafet spin relaxation mechanism, D'yakonov-Perel mechanism results in more appreciable gate-tuning performance. These unique features of GSDM would give rise to abundant spin logic applications, such as on-chip spin current modulators and reconfigurable spin logic circuits.Comment: 18 pages,3 figures,1 tabl

    Impact of corpus callosum fiber tract crossing on polarimetric images of human brain histological sections: ex vivo studies in transmission configuration.

    Get PDF
    SIGNIFICANCE Imaging Mueller polarimetry is capable to trace in-plane orientation of brain fiber tracts by detecting the optical anisotropy of white matter of healthy brain. Brain tumor cells grow chaotically and destroy this anisotropy. Hence, the drop in scalar retardance values and randomization of the azimuth of the optical axis could serve as the optical marker for brain tumor zone delineation. AIM The presence of underlying crossing fibers can also affect the values of scalar retardance and the azimuth of the optical axis. We studied and analyzed the impact of fiber crossing on the polarimetric images of thin histological sections of brain corpus callosum. APPROACH We used the transmission Mueller microscope for imaging of two-layered stacks of thin sections of corpus callosum tissue to mimic the overlapping brain fiber tracts with different fiber orientations. The decomposition of the measured Mueller matrices was performed with differential and Lu-Chipman algorithms and completed by the statistical analysis of the maps of scalar retardance, azimuth of the optical axis, and depolarization. RESULTS Our results indicate the sensitivity of Mueller polarimetry to different spatial arrangement of brain fiber tracts as seen in the maps of scalar retardance and azimuth of optical axis of two-layered stacks of corpus callosum sections The depolarization varies slightly () with the orientation of the optical axes in both corpus callosum stripes, but its value increases by 2.5 to 3 times with the stack thickness. CONCLUSIONS The crossing brain fiber tracts measured in transmission induce the drop in values of scalar retardance and randomization of the azimuth of the optical axis at optical path length of . It suggests that the presence of nerve fibers crossing within the depth of few microns will be also detected in polarimetric maps of brain white matter measured in reflection configuration

    The Near-Sun Streamer Belt Solar Wind: Turbulence and Solar Wind Acceleration

    Get PDF
    The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP's fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfv\'enicity, and a "1/f" break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4{\deg} from the HCS, suggesting ~8{\deg} as the full-width of the streamer belt wind at these distances. While the majority of the Alfv\'enic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    Sex differences in cancer mechanisms

    Get PDF
    We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients

    Quantum Criticality and Novel Phases: Summary and Outlook

    Full text link
    This conference summary and outlook provides a personal overview of the topics and themes of the August 2009 Dresden meeting on quantum criticality and novel phases. The dichotomy between the local moment and the itinerant views of magnetism is revisited and refreshed in new materials, new probes and new theoretical ideas. New universality and apparent zero temperature phases of matter move us beyond the old ideas of quantum criticality. This is accompanied by alternative pairing interactions and as yet unidentified phases developing in the vicinity of quantum critical points. In discussing novel order, the magnetic analogues of superconductivity are considered as candidate states for the hidden order that sometimes develops in the vicinity of quantum critical points in metallic systems. These analogues can be thought of as "pairing" in the particle-hole channel and are tabulated. This analogy is used to outline a framework to study the relation between ferromagnetic fluctuations and the propensity of a metal to nematic type phases which at weak coupling correspond to Pomeranchuk instabilities. This question can be related to the fundamental relations of Fermi liquid theory.Comment: Conference summary for the 2009 Dresden Meeting on Quantum Criticality and Novel Phases. 7 pages and 4 figures. The associated presentation may be found at http://www.theory.bham.ac.uk/staff/schofield/talks/Dresden

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors
    corecore