49 research outputs found

    The Adenosine Receptor Antagonist, 7-Methylxanthine, Alters Emmetropizing Responses in Infant Macaques

    Get PDF
    PURPOSE. Previous studies suggest that the adenosine receptor antagonist, 7-methylxanthine (7-MX), retards myopia progression. Our aim was to determine whether 7-MX alters the compensating refractive changes produced by defocus in rhesus monkeys. METHODS. Starting at age 3 weeks, monkeys were reared with -3 diopter (D; n = 10; 7-MX -3D/pl) or +3D (n = 6; 7-MX +3D/pl) spectacles over their treated eyes and zero-powered lenses over their fellow eyes. In addition, they were given 100 mg/kg of 7-MX orally twice daily throughout the lens-rearing period (age 147±4 days). Comparison data were obtained from lens-reared controls (-3D/pl, n = 17; +3D/pl, n = 9) and normal monkeys (n = 37) maintained on a standard diet. Refractive status, corneal power, and axial dimensions were assessed biweekly. RESULTS. The -3D/pl and +3D/pl lens-reared controls developed compensating myopic (-2.10±1.07 D) and hyperopic anisometropias (+1.86±0.54 D), respectively. While the 7-MX +3D/pl monkeys developed hyperopic anisometropias (+1.79±1.11 D) that were similar to those observed in +3D/pl controls, the 7-MX -3D/pl animals did not consistently exhibit compensating myopia in their treated eyes and were on average isometropic (+0.35±1.96 D). The median refractive errors for both eyes of the 7-MX -3D/pl (+5.47 D and +4.38 D) and 7-MX +3D/pl (+5.28 and +3.84 D) monkeys were significantly more hyperopic than that for normal monkeys (+2.47 D). These 7-MX-induced hyperopic ametropias were associated with shorter vitreous chambers and thicker choroids. CONCLUSIONS. In primates, 7-MX reduced the axial myopia produced by hyperopic defocus, augmented hyperopic shifts in response to myopic defocus, and induced hyperopia in control eyes. The results suggest that 7-MX has therapeutic potential in efforts to slow myopia progression

    IMI – Interventions myopia institute:Interventions for controlling myopia onset and progression report

    Get PDF
    Myopia has been predicted to affect approximately 50% of the world’s population based on trending myopia prevalence figures. Critical to minimizing the associated adverse visual consequences of complicating ocular pathologies are interventions to prevent or delay the onset of myopia, slow its progression, and to address the problem of mechanical instability of highly myopic eyes. Although treatment approaches are growing in number, evidence of treatment efficacy is variable. This article reviews research behind such interventions under four categories: optical, pharmacological, environmental (behavioral), and surgical. In summarizing the evidence of efficacy, results from randomized controlled trials have been given most weight, although such data are very limited for some treatments. The overall conclusion of this review is that there are multiple avenues for intervention worthy of exploration in all categories, although in the case of optical, pharmacological, and behavioral interventions for preventing or slowing progression of myopia, treatment efficacy at an individual level appears quite variable, with no one treatment being 100% effective in all patients. Further research is critical to understanding the factors underlying such variability and underlying mechanisms, to guide recommendations for combined treatments. There is also room for research into novel treatment options

    Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study

    Get PDF
    The adenosine antagonist 7-methylxanthine (7-mx) works against myopia in animal models. In a clinical trial, 68 myopic children (mean age 11.3 years) received either placebo or 7-mx tablets for 12 months. All participants subsequently received 7-mx for another 12 months, after which treatment was stopped. Axial length was measured with Zeiss IOL-Master and cycloplegic refraction with Nikon Retinomax at −6, 0, 12, 24, and 36 months. Axial growth was reduced among children treated with 7-mx for 24 months compared with those only treated for the last 12 months. Myopia progression and axial eye growth slowed down in periods with 7-mx treatment, but when the treatment was stopped, both myopia progression and axial eye growth continued with invariable speed. The results indicate that 7-mx reduces eye elongation and myopia progression in childhood myopia. The treatment is safe and without side effects and may be continued until 18–20 years of age when myopia progression normally stops

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P\textit{P}  < 5 × 108^{-8}). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (R\textit{R}g_{g} = -0.22, P\textit{P}  = 5.5 × 1013^{-13}), T2D (R\textit{R}g_{g} = -0.27, P\textit{P}  = 1.1 × 106^{-6}) and coronary artery disease (R\textit{R}g_{g} = -0.30, P\textit{P}  = 6.5 × 109^{-9}). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P\textit{P} = 1.9 × 104^{-4}). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust
    corecore