906 research outputs found

    Preliminary design study of a quiet, high flow fan (QHF) stage

    Get PDF
    Concepts selected to reduce fan generated noise in a turbofan are presented. Near-sonic flow at the fan inlet to reduce upstream propagated noise and the use of long-chord vanes to reduce downstream noise is discussed. The near-sonic condition at the rotor inlet plane was achieved by designing for high specific mass flow and by maintaining the high flow at reduced power by variable stators and variable fan exhaust nozzle. The long-chord vanes reduce response to unsteady flow. The acoustic design showed that long-chord stators would significantly reduce turbofan source noise and that other stator design parameters have no appreciable effect on noise for the spacing and chord length of the turbofan design. Four rig flow paths studied in the aerodynamic preliminary design are discussed. Noise prediction results indicate that a turbofan powered aircraft would be under federal air regulations levels without any acoustic treatment

    Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Get PDF
    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C

    Instrumental and Analytic Methods for Bolometric Polarimetry

    Get PDF
    We discuss instrumental and analytic methods that have been developed for the first generation of bolometric cosmic microwave background (CMB) polarimeters. The design, characterization, and analysis of data obtained using Polarization Sensitive Bolometers (PSBs) are described in detail. This is followed by a brief study of the effect of various polarization modulation techniques on the recovery of sky polarization from scanning polarimeter data. Having been successfully implemented on the sub-orbital Boomerang experiment, PSBs are currently operational in two terrestrial CMB polarization experiments (QUaD and the Robinson Telescope). We investigate two approaches to the analysis of data from these experiments, using realistic simulations of time ordered data to illustrate the impact of instrumental effects on the fidelity of the recovered polarization signal. We find that the analysis of difference time streams takes full advantage of the high degree of common mode rejection afforded by the PSB design. In addition to the observational efforts currently underway, this discussion is directly applicable to the PSBs that constitute the polarized capability of the Planck HFI instrument.Comment: 23 pages, 11 figures. for submission to A&

    Cosmological Parameters from the 2003 flight of BOOMERANG

    Full text link
    We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the Λ\LambdaCDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.Comment: 18 pages, 10 figures, submitted to Ap

    A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang

    Get PDF
    We report on observations of the Cosmic Microwave Background (CMB) obtained during the January 2003 flight of Boomerang . These results are derived from 195 hours of observation with four 145 GHz Polarization Sensitive Bolometer (PSB) pairs, identical in design to the four 143 GHz Planck HFI polarized pixels. The data include 75 hours of observations distributed over 1.84% of the sky with an additional 120 hours concentrated on the central portion of the field, itself representing 0.22% of the full sky. From these data we derive an estimate of the angular power spectrum of temperature fluctuations of the CMB in 24 bands over the multipole range (50 < l < 1500). A series of features, consistent with those expected from acoustic oscillations in the primordial photon-baryon fluid, are clearly evident in the power spectrum, as is the exponential damping of power on scales smaller than the photon mean free path at the epoch of last scattering (l > 900). As a consistency check, the collaboration has performed two fully independent analyses of the time ordered data, which are found to be in excellent agreement.Comment: 11 pages, 7 figures, 3 tables. High resolution figures and data are available at http://cmb.phys.cwru.edu/boomerang/ and http://oberon.roma1.infn.it/boomerang/b2

    Searching for non Gaussian signals in the BOOMERanG 2003 CMB maps

    Get PDF
    We analyze the BOOMERanG 2003 (B03) 145 GHz temperature map to constrain the amplitude of a non Gaussian, primordial contribution to CMB fluctuations. We perform a pixel space analysis restricted to a portion of the map chosen in view of high sensitivity, very low foreground contamination and tight control of systematic effects. We set up an estimator based on the three Minkowski functionals which relies on high quality simulated data, including non Gaussian CMB maps. We find good agreement with the Gaussian hypothesis and derive the first limits based on BOOMERanG data for the non linear coupling parameter f_NL as -300<f_NL<650 at 68% CL and -800<f_NL<1050 at 95% CL.Comment: accepted for publication in ApJ. Letter

    Ultra High Energy Cosmology with POLARBEAR

    Full text link
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called "B-mode" polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals; each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation -- more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding

    Software systems for operation, control, and monitoring of the EBEX instrument

    Full text link
    We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3~GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.Comment: 11 pages, to appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2010; adjusted metadata for arXiv submissio
    corecore