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PRELIMINARY DESIGN STUDY
OF A
QUIET, HIGH-F!OW FAN (QHF) STAGE

By C. L. walker, L. S. Kisner, R. A, Delaney, A. A. Beguhn, D, E. Frye
DETROIT DIESEL ALLISON DIVISION OF GENERAL MOTORS CORPORATION

I

i SUMMARY

LS

! Concepts selected to reduce fan generated noise in the QHF (Quiet, High-Flow)

b fan are near-sonic flow at the fan inlet to reduce upstream propagated noise

ot and the use of long-chord vanes to reduce downstream noise. The near-sonic

' condition at the rotor irnlet plane is achieved by designing for high specific

R mass flow and by maintaining the high flow at reduced power by variable

K geometry--variable angle tandem stators and a variable fan exhaust nozzle,

F The long-chord vanes reduce their response to unsteady flow phenomena.

i The purpose of the study reported herein was to perform an acoustic design

% along with preliminary aerodynamic and mechanical designs to assure that a

# 508 mm (20 inch) rig could be built and tested at NASA Lewis to demonstrate

& these concepts for reducing fan source noise.

k4

. The acoustic design showed that lonq-chord stators would significantly reduce
fan source noise, In fact, the analysis indicates that other stator design
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parameters have no appreciable effect on noise for the spacing and chord
length of the QHF design.

The aerodynamic preliminary design cesulted from iterations between acoustic
and aerodynamic characteristics related to hub loading (D factor) and ap-
proach power vane Mach number, Four rig flow paths are discussed, The final
two were acoustically satisfactory and the selected configuration had
satisfactory loading distributions and surge margin predictions.

The mechanical preliminary design indicates no serious interface problems,
and-~based on similar rotor operation at DDA--no insurmountable final design
mechanical problems.

Noise contours provide a method of describing the area of annoyance in the
vicinities of airports. Contours for 100 EPNdB levels for the 79379 kg
(175,000 1b,) aircraft powered with untreated GHF ran engines had areas much
smaller than for aircraft with conventicnal fan engines, and the QHF fan
engine 100 EPNdB contours would be contained within many airport boundaries,
Noise prediction results indicate that a QHF powered aircraft would be under
FAR Part 36 levels without any acoustic treatment,
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INTRODUCTION

This report describes preliminsry aerodynamic and mechanical designs and a
detailed acoustic analysis of a single-flow~path, inlet-guide-vaneless fan
stage subsequently referred o as the QHF (Quiet, High-Flow) fan. Future
advanced turbofan powered transport aircraft, both CTOL and STOL, are
expected to require extensive noise treatment in the fan inlet and exit
ducts to meet environmental noise requirements during take-off and approach.
For several reasuns it is desirable to minimize internal duct treatment.

One method of reducing noise propagating torward from the fan stage is to
use a sonic or near-sonic inl~t to attenuate forward propagating noise.
Advocates of this methoa have usually proposed a restriction in the inlet
followed by a diffuser to the fan in¥et with some sort of variable y.ometry
to permit a near-sonic conditinn to be maintained At both take-off and
approach power settings. The concept being d-veloped under this program

is to design the fan to have a high inlet specific flow which will result in
a near-sonic flow condition at the fan-face tc reduce forward propagating
fan noise at design mess flow without a diffuser upstream of the fan. In
exchange for variable geometr¥ in the engine inlet required for conventional
sonic inlets, this design will require - variable fan stage outlet guide
vane and a large-area-change fan nozzle to permit achieving approach thrust
at design fan mass flow. To reduce fan source exit noise at these high mass
flow conditions, the QHF (Quiet, High Flow) fan will use long-chord exit
vanes which have been theoretically shown to reduce both discrete frequency
and broadband. noise by reducing the vanc response to blade wakes and tur-
bulent eddies, The fan has a rotor tip diameter of 508 millimeters (20
inches) and is designed to operate in the NASA Lewis Research Center aero-
dynamic];erformance facility, w-8, and fan noise facility, W-2, as shown in
Figure 1.

The preliminary aerodynamic and mechanical designs provided the information
necessary for a complete and thorough acoustic analysis of the conccpt of a
constant high-specific~flow rotor combined with long-chord, double~row
stators (constant inlet flow for all noise~-rating conditions). The pre-
liminary mechanical design is sufficiently detai?ed to assure that mechanical
feasibility of the configuration and blading can be obtained during final
design.

The detailed acoustic analysis of the concept, developed concurrently with
the aerodynamic and mechanical design, was used in conjunction with them to
optimize the fan from the acoustic standpoint. Upon completion of the pre-
liminary aerodynamic and mechanical designs, a thorough and detailed
acoustic analysis of the selected fan design was performed. Finally, a
calzulation was made of the distributed and maximum take-off and approach
perceived noise at two specified altitudes, These results are compared with
similar information for existing fans of the same general aerodynamic char-
acteristics,

There are several advantages which should accompany the adoption of the QHF
concepts in a turbofan engine. The QHF inlet will be shorter and lighter and
should also be less subject to distortion at the fan face because of the
absence of diffusion in the inlet duct. This should also mean that the
engine needs less stall margin. The complexity introduced by the variable
outlet guide vanes and fan exit nozzle is offset by the lack of a requirement
for v.riable geometry in the inlet duct and very rapid response from approach
to take-off thrust. This latter advantage accrues from the engine rotor
being at full speed during approach. Whether the engine would be lighter
than a conventional engine is undoubtedly more dependent on other details
than whether the higher specific mass flow fan stage benefit is outweighed

by the penalty of the longer outlet guide vanes,
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ACOUSTIC DESIGN

DESIGN_TOOLS

The key element in predicting fan noise is the unsteady response of the
blade rows to disturbances in the flow. For the |GV-less fan, the rotor-
stator interaction is the primarY source of discrete noise, and thus the
stator response to rotor wakes plays the major role in determinina fan
discrete noise levels, This study employed two response models: a com-
pressible extension of Kemp-Sears 1 deve¥oped by Osborne ¢ and an in-
compressible conbined gust response model using th& Sears-Horlock 3 theory
for cambered airfoils developed by Naumann and Yeh®., Both models were used
to calculate rotor-stator interaction noise and the Naumann and Yeh model
allowed the consideration of the effeccs of incidence and camber.

Broadband noise can also be related to the unsteady response of the blade
rows. This was accomplished Ly using the compressible response theory and a
model for the turbulence spectrum. The turbulence spectrum was conside red

to be a superposition of sinusoidal gusts at all frequencies. The fluctuating
force was computed at each streamline location across the span in a strip
theory model. The total sound pressure level was obtained by assuming an
array of incoherent sources such that the mean squared sound pressures add
linearly, The -broadband noise model includus the effects of important para-
meters such as turbulence intensity and nondimensional ratio of length

scale to stator spacing suggested gy Mani 5 .

A theoretical noise prediction program based upon the considerations’ discussed
above was used to analyze the effects of the geometric flow path, blade
shapes, and aerodynamic flow variables upon discrete and broadband noise
generation, An acoustic design procedure was thus developed that can be
factored into the aerodynamic design function. The chart in Figure 2
itlustrates this capability. This system provided the theoretical back-
ground for parametric studies and analysis of final designs,

AERODYNAMIC AND MECHANICAL |-
DES!GN CALCULAT!ONS

WAKE l CHANGES
OR IN
TURBULENCE FAN STREAMLINE ANALYSIS AERODYNAMIC
DESCRIPTION SPANWISE VARIATION OF AERODYNAMICS DESIGN

1

CALCULATE UNSTEADY RESPONSE AT EACH STREAMLINE

1 COMPRESSIBLE GUST THECRY

2. COMBINED SEARS-HORLOCK TYPE GUST
3. CHECK FOR CASCADE RESINANCES

L, BROADBAND THEORY

PREDICT EFFECTS ON DISCRETE
LﬁﬂD BROADBAND NOISE LEVELS

Figure 2, Aero/Acoustic Design interaction
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In addition to the theoretical calculations, absolute noise predictions were
made in accordanre with semi-emnirical techniques developed at NDA® repre-
senting multiple regression best fit of published noise cata as a furction
of the important fan and jet aerodynamic parameters, A surmary of the
acoustic design tools is shown in Table 1.

TABLE 1. ACOUSTIC DESIGM TCOLS

RESPONSE THEORY REF ERENCES
COMPRESS IBLE EXTENION OF SEARS/ 0SBORNE( 1+2)
SEARS THEORY
~OMBINED EFFECTS OF TRANSVERSE NAUMANN/ YEH( 2+ %)

AND PARALLEL GUSTS INCLL. ING
SMALL CAMBER

BROADBAND RESPONSE THEORY MANI(S)
DDA

NOISE THEORY
GENERAT 1 ON/ PROPAGAT | ON/RADIATION DDA

EMPIRICAL NOISE_PREDICTION
BEST FIT OF PUBLISHED FAN DATA opa(6)

ACOUSTIC PHILOSOPHY

Forward Radiated Noise

It has been demonstrated that a near-sonic inlet design is effective in
reducing forward radiated noise. The results of DDA model testing are
shown in Figure 3 along wita NASA data and a thecretical curve., The
theoretical curve was deduced from the DDA noise prediction equations to

be 1
20 log (—)

1-M2

assumirg a uniform flow condition at the throat ahead of the fan face
of Mach number M. This curve appears to represent the ideal attainable
suppression of noise due to the partial sonic block.

A modification of this concept is an integral part of the QHF fan design to
obtain substantia! (~12 dB) reduction over conventional designs. This
concept uses high specific flow to significantly suppress the forward
radiated noise due to discrete frequency blade row interaction, broadband
phenomena, and multiple pure tones. Results of DDA model testing and full
scale fan data show that the noise levels of high speed fan. actuall
decrease as the tip Mach number is increased to values beyond atout Y.h.

The results of narrow band analysis of a DDA model fan illustrate this noise
reduction in Figure 4, The QHF fan will operats at an even hick.r Mach
number of 1.8 and thus substantial reduction in all noise mechanisms radiating
out the inlet t- the far field is predicted. The fan design to acconplish
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the required high flow is determined solely by aerodynamic considerations.
Because the rotor design could not therefore be changed, parametric evalua-
tion of rotor noise was not considered,

Stator Noise

Because of the large attenuation of forward noise by the rotor inlet condi-

tion, the problem of acoustic design became one of reducing the rearward radi-

ated discrete and broadband noise due to the unsteady rasponse of stator

vanes to periodic and random excitations. The fundamental concept er ~loyed

In this design is the use of fewer, long chord vanes of conventional solidity.

This concept has been studied experimentally at DDA. Figure 5 shows a

noise reduction of 7-8 dB using 10 long-chord vanes incorporating acoustic

. treatment on the surfaces rather than 24 conventional vanes., By calculating
the maximum attenuation from Rice's theorylo for_the suppression treatment
used and the airfoil resgonse from Sears' theory¢ it was found that most

¥ of the noise reduction observed from long chord vanes was due to the lower

; response of the vanes to high reduced frequency fluctuations., This reduction

r

'

¢

VY] USSR TR R T K, TR

was observed for broadband noise that was dominant over discrete tones and
established a basis for analyzing broadband noise in terms of unsteady blade
response, ‘“roadband mechanisms that can be reduced by long-chord vanes are:

® turbulence-blade row interaction
® broadband wake modulation
e stator vortex shedding

It was concluded that in addition to the expected reduction in discrete
noise, broadband noise could be reduced with long-chord vanes.

EFFECT OF GEOMETRY
(Analysis predicts 8dB)

¥ wi
; £, . ,CONVENTIONAL VANES
; 5 &
- 140 ¢ al )

w ow I

CONVENTIONAL STATORS o el |
= al .
o e —
Mk 1 MODEL FAN QW & LONG CHORD
130 & o N % VANES

A B I ‘
/ REDUCED FKEQUENCY
FECT OF TREATMENT

EF
=| (Analysis predicts 1.5-2.dB)
F 120 - P 2
1 = bk
d & <
E - =
¢ < SN\ REATED LONG
] ) LONG-CHORD TREATED STATORS - : ""CHORD VANES
) 110 ‘ ) : \ L
‘ 50 60 70 80 ©°0 100 REDUCED FREQUENCY

MAXTIHUM 1/3-0CTAVE SOGUND PRESSURE LEVEL, dB(re COuPa)

PERCENT SPEED

FIGURE 5. EVALUATION OF TREATED LONG CHORD VANES--TREATMENT VS. GEOMETRY
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TAKEOFF NOISE PARAMETERS

The acoustic design studies involved detailed parametric evaluation of the
effects of aerodynamic design parameters on noise generation. The para-
meters studied were number of stator vanes, rotor loss coefficient, rotor
exit absolute angle, stator camber, stator incidence angle, blade-vane
interaction angle, and stator setting angle. Each parameter was varied

+ 20% about the initial design value uniformly from hub to tip. For con-
Venience the mean streamline value of the parameter is given, Detailed
aerodynamic and geometric parameters are defined in Figure 6. Calculation
of stator response for all parameters was done with both the compressible
Sears and Naumann and Yeh combined gust response models where possible.
These results were used to predict changes in botk forward and rearward
radiated discrete far fizld noise levels (maximum SPL and PWL).

Stator Absolute Inlet Angle
Rotor Relative Exit Angle
Incidence Angle

Setting Angle

Interaction Angle

True Chord

Camber Half-Angle

a

NO$ - R
o
onuwnuwnmn

/2 =

STATOR

ROTOR //:mk\

70
C

a

_Fﬂ_) - - - __

o/ 2

FIGURE 6, DETAILED AERODYNAMIC PARAMETERS
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MAX IMUM SOUND

Each figure to be presented in the parametric study contains a plot of the
maximum sound pressure level at a constant radius and the total blade passing
tone sound pc rer level. When assessing the effect of the design variable

on the ncise, the sound pressure level reflects changes in rad?ated directive~
ity that depend upon the propa?ating modal patterns, whereas the sound power
represents physically the total modal discrete energy. This explains the
smoother shapes of the sound power curves,

Discrete Noise Radiation Parametrics

Number of Stator Vanes., For a given rotor aerodynamic design and stator
solicdity, interaction noise was computed for a range of stator vane numbers,
10-16, and stator chord, 130-200 mm (5.1 = 7.9 in.). The fluctuating stator
response to incoming gusts was used to compute sound power and sound pressure
levels generated by rotor stator interactions. Both the compressible Sears
and Naumann-Yeh response models exhibited the same trends, The results shown
in Figures 7-10 point to the advantage of fewer vanes of longer chord to
maintain the same solidity. It was recommended that the aerodynamic design
incorporate the minimum possible number of vanes, in this case 10,

N

10 dB
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MAXIMUM SOUND
PRESSURE LEVEL

SOUND PULWER LEVEL
1

SOUND POWER LEVEL
!
|
]
\

10 12 14 16 10 12 14 16
NUMBER 0" VANES NUMBER OF VANES

FIGURE 7. EFFECT OF VANE NUMBERlON FIGURE 8, EFFECT OF VANE NUMBER ON
UPSTREAM PROPAGATED DiS- UPSTREAM PROPAGATED DIS-

CRETE NOISE, SEARS CRETE NOISE, NAUMANN-
ngPRESSIBLE RESPONSE YEH RESPONSE MODEL
MODEL
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Rotor Exit Relative Flow Angle.

The rotor exit relative flow angle was varied
+ b degrees from the design value. The results are shown in Fiqures 11-12,

Tndicating a reduction in noise with

-

k3
Q.
=

MAX IMUM SOUND
PRESSURE LEVEL

SOUND POWER LEVEL
=)
=8
(v}

10

F1GURE 10.

12 14 16
NUMBER OF VANES

EFFECT OF VANE NUMBER ON
DOWNSTREAM PROPAGATED
DISCRETE NOISE. NAUMANN-
YEH RESPONSE MODEL

increasing exit angle. This is due

primarily to the increase in distance of wake travel resultin? in reduced
n eff

wake strength,

stator spaci

Stator Camber.

ng.

This could be interpreted as an increase i

ective rotor

The Naumann-Yeh model was used to vary the camber angle + §

degrees with the resultant noise predicted in Fi?ures 13-14, Noise increases

with increasing camber for a given chord, possib

turning across the vane.

Interaction

y due to an increase in

Angle. The interaction angle is defined as the sum of rotor

relative exit angle and stator absolute inlet an
wake interaction should occur at 90°
relatively flat over a + 5° ran
level curves shcwn in FTgures |

Incidence Angle.

gle (see Figure 6). Maximum
with a sin(8 + a) varlation that is
gei6 This explains the relatively flat noise

A + 5° variation in stator incidence angle produced only
a slight increase in noise as Incidence is increased

as shown in Figures

17-18. This could be due to the effects of high reduced frequency.

10
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Pressure Loss Coefficient. The loss coefficient was related to an effective

MAX IMUM SOUND
PRESSURE LEVEL

SGUND POWER LEVEL

drag coefficient that enters into the wake model. Figures 19 and 20 show
that the noise does not change significantly with reduced losses until a very
low value of loss is assumed.
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Broadband Noise

A model for estimating the effects of airfoil design parameters on broad-
band noise generation was developed., Results from the broadband noise
red,.cted spectra and directivity are shown in Figures 21 and 22, The
© ic assumption for this broadband noise calculation is that the origin
(. tur. tlence impinging upon the stator is the turbulent wakes of the rotor.
An uppe limit to the turbulence scale should be the wake width at the
stator inlet, Using the cenventional Silverstein NACA wake model, the wake
width was calculated as a function of rotor solidity, 0., drag coefficient,
Cp", and nondimensional distance of wake travel/rotor chord, xr/cr,
according to the equation

- ry'sc
Y =0.96 C_(Cy x./C.)

The resultant scale of turbulence divided by stator spacing is approxi-
matel¥ 0.4, representing an upper bound for the QHF fan. However, the
turbulence in the wakes is assumed to be composed of a distribution of

13
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eddies smaller than the wake width. A scale of 0.05 appears to yield
representative broadband spectra for modern fans. This implies a turbulence
correlation length of one-eighth of the wake width,

It was found that most detailed aerodynamic design parameters did not signi-
ficantly effect the predicted broadband noise levels. The only exception

is the effect of the number of stator vanes, and these results are presented
in the Final Acoustic Design section,

APPROACH NOISE STUDIES

At the approach power setting, the QHF is designed to achieve design point
airflow and tip speed. The noise reduction features of high speci%ic flow
for forward noise attenuation and high reduced frequencies for reduced
stator noise should be maintained,

To maintain high specific flow while preventing choking at the stator, a
variable tandem stator design was employed., The approach geometry is shown
in Figure 23, Aerodynamic analysis for first stator reset angles of -25°,

————— VANE SETTING AT TAKEOFF
~~~~~~~ VANE SETTING AT APPROACH

—~— .
— e ———

—
— — —

">
}“‘\ RESET ANGLE=25-35°

/L
I ——

- REAR VANE ROW

FORWARD /ANE ROW

FIGURE 23, VANE GEOMETRY FOR TAKEOFF AND APPROACH POWER

-30°, and -35° were used as inputs for noise predictions based upon the
Naumann-Yeh combined gust response model and the DDA theoretical noise
prediction program., The acoustic disadvantage of the approach condition

is that there are now two shorter chord stator rows responding to the rotor
wakes, |t was assumed that the maximum noise at approach wou?d occur with
each rotor-stator interaction computed and added acoustically, thus neglect-
ing any shielding of the second stator row. Each stator row interaction
was computed in terms of changes in rotor relative exit flow angle, stator
incidence angle, stator setting angles, and stator camber, The results for
downstream noise as a function of stator setting angle are shown in Figure
2k, The advantage of increasing the first stator chord was explored and
results are shown in Figure 25, i.e. an almost insignificant change in
noise due to increasing first stator chord, The results of the approach
noise studies are summarized in the following conclusions:

1. Approach noise “acreases slightly as the reset angle is increased

2, Stator 1 Is the dominant noise source at approach
15
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FINAL ACOUSTIC DESIGN

Continuous feedback between aerodynamic desiqn and acoustic design was main-
tained throughout this program, As the final design evolved through this
interaction, final acoustic calculations were made for the best two aero-
dynamic designs. The two main objectives of the final acoustic design were
to establish quantitative noise reduction benefits of the QHF fan, and to
determine the acoustic superiority of the final design.

Noise Reduction Benefits of the QHF Fan
The high specific flow is an attractive concept for significantly reducing

forward radiated discrete, broadband, and multiple pure tone noise, Al-
though absolute knowledge of the noise reduction benefits will not be known

16
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until the actual testing at NASA, an expected forward noise reduction of at
least 12 dB is predicted based upon near sonic inlet and high speed fan data
and simplified theoretical considerations (see Figures 3 and 4). The rear-
ward radiated noise reduction benefits are attained through long chord stators
which reduce discrete and broadband noise due to fluctuat?ng forces on the
vanes. The effect of vane number on discrete noise is shown in Figure 26.

In these predictions the solidity is maintained and the vane chord increased
as the number of vanes is reduced. The number of vanes is also the most
important parameter in reducing broadband noise as shown in Figure 27.

/— ‘f
- L~ | N .
w s gg 10 dB UPSTREAM PROPAGATED NOISE
: - 334 ——
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9 xu
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10 20 30 40 50 10 20 30 Lo 50

NUMBER 0F VANES NUMBER OF VANES
FIGURE 26, EFFECT OF VANE NUMBER ON FIGURE 27, EFFECT OF VANE NUMBER
ODOWNSTREAM DISCRETE ON BROADBAND NOISE
NOISE
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The effect of vane number on broadband noise spectra is shown in Figures

28 and 29. The correlation lenjyth is held constant as the vane number is
varied, The nondimensional SCALE, defined as the rati» of turbulence

scale to stator spacing, appears in the noise model and is proportional

to the number of vanes, The value of SCALE = ,05 was matched to the 50
vane and 10 vane case in Figures 28 and 29, respectively, The advantage of
fewer, long chord vanes is clearly seen and a 12-13 dB reduction in rear-
ward radiated stator noise is expected for the QHF fan,

Acoustic Comparison of Final Designs

Acoustic analysis of the final aerodynamic design configurations (defined
in Aerodynamic Design Section), was performed to determine acoustic superi-
orit¥ and to provide guidance for the final aerodynamic design. The
results are based upon both theoretical noise prediction and empirical
correlation of noise from existing fans. The maximum blade passing tone
and broadband 1/3 octave SPL at 30.5 m (100 ft.) radius are compared for
takeoff and approach power in Table 2, The results are scaled to full size
9072 kg (20,000 1b) thrust class and bypass ratio of 6. Configuration 3

is somewhat better acoustically than configuration 4, Therefore, from both
aerodynamic and acoustic standpoint, configuration 3 was selected.

ACOUSTIC DESIGN SUMMARY

The results of the acoustic design st dies can be summarized in terms of a
series of guidelines for the aerodynamicist to follow for the development
of a quiet, high speed fan:

Maintain high specific flow through fan
Increase rotor relative exit angle
Minimize the number of stator vanes
Increase stator chord

Reduce stator camber

Changes in other geometric and aerodynamic parameters produced insignificant
changes in noise generation and radiation,

TABLE 2. SOUNC PRESSURE LEVEL COMPARISQONS OF QHF
CONF IGURATIONS, dB re 2 x 10=> PASCAL

Maximum value at 30.5 Meters (100 Ft,)

BPF = Blade Passage Frequenc¥
BB = Maximum 1/3 Octave Excluding BPF

CONF IGURATION 3 CONF IGURATION &4
TAKEOFF APPROACH TAKEOFF APPROACH
FRONT BPF 98 ok 102 93
FRONT BB 92 82 85 82
REAR BPF 91 77 88 84
REAR BB 103 aL lil 84

-t
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AERODYNAMIC DPESIGN

DESIGN CONSTRAINTS

Design parameters for the QHF fan are:

Stage pressure ratio

Correcteg airflow per_un 't frontal area -
kg/sec m (1bm/sec-ft?)

Rotor corructed tip speed - m/sec (ft/sec)

1.65
219.71 (45)

548,64 (1800)

Rotor inlet hub-tip ratio 0.426
Rotor blade aspect ratio 1.715
Fan efficiency 8L4%

The QHF fan has a 508 mm (20 in.) tip diameter which corresponds to a
0.337 linear scale of th2 size required to produce the same thrust as the
GMA 100/1 fan, a conventional DDA 1.65 pressure ratio fan used to cumpare
QHF performance, The tip speed of 54B.64 m/sec (1800 ft/sec) was chosen
to keep the rotor and stator loading levels within acceptable limits.
Design point corrected airfiow and speed for the rig are 36.56 kg/sec
(80.2 Ib/sec) and 20,626 RPM, respectively,

A relatively low value of rotor blade aspect ratio (1.715) was selected

to eliminate the need .or part-span shrouds. With the high inlet specific
flow, part-span shroud blockage would be sufficient to increase the effective
flow per unit area to a point very near choke at the rotor inlet.

To ensure the near-sonic block capability of the high inlet specific flow,
the flow path walls are contoured to give an essentially flat inlet velocity
profile, Rotor inlet Mach number distributions are shown in Figure 30. The
average value of inlet axial Mach number is 0,725,

76
Absolute
= 74}
e
2
E .72
<
£
8
= o70 i //
,,/”// Axial Component
.68 A 4 4 ! '

20 4o 60 80 100

Percent Span From Hub

FIGURE 30, ROTOR INLET MACH NUMBER DISTRIBUTIONS
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The high fan-face-inlet absolute Mach number combined with the high tip
speed yield supersonic inlet relative Mach numbers over the entire span
with a tip value of 1,83, The rotor exit relative Mach numbers are super-
sonic over the upper 40% of the span.

The number of rotor and stator airfoils are 24 and 10, respectively, The
number of rotor airfoils was fixed by performance and structural considera-
tions while the number of vanes was set by acoustic constraints.

The preliminary design peint analysis of the QHF fan was performed using
the DDA developed Axial Compressor Design Calculation which obtains a
solution to the continuity, energy, and full radial equilibrium equations
for an axisymetric flow field. The equations account for streamline
curvature and radial gradients of total enthalpy and entropy. This cal-
culation procedure predicts the aerodynamic solution of the flow process
along streamlines at interblade row stations,

ENGINE OPERAT | ON

The QHF fan operation is explained in terms of the typical 1.65 pressure
ratio fan map shown in Figure 31, Typical fan operation is along line
B-A-C in Figure 31, where points B, A and C represent the approach, takeoff
and maximum-cruise operating points, resgectively. in this case, thrust
modulation is- accompanied by changes in both airflow and rotor speed. For
the QHF fan, however, a minimum airflow equal to the takeoff value must be
achieved at the approach thrust level to maintain the near sonic acoustic
block at the rotor face, This conditien can be achieved through the addi -
tion of a variable area fan exhaust nozzle and variab:e fan stator, The
QHF approach operating point at takeoff airflow and at the same thrust
level as the approach condition for the typical fan is shown on the map

in Figure 31 as point B', This condition is reached from takeoff by in-
creas;?g the secondary nozzle area 96% for an approach thrust of 30% of
takeoff,

QHF Fan
2.0 Operating Line Crizise, 11 km
. (36089 ft.),
Surge cine 0.85 M

m'«‘

1.8
o Typical Fan
“ Operating Line c
2 1.6}

: Constant Compresser
b Efficiency Contours— Takeof
3
(1)
wn
A Approach 110% _
v 11 m (365 ft.), 1004 v/ Ve
: 69 m/sec (134 kt). Peréeﬁé Degign
g, 90y ' Corrected
o 1.2+ | Speed

-~ |
a(S] 8
1.0 b ! 30y 0% . .

0 10 20 30 Lo 50 60 70 g0 90 100 I}O

Percent Design Flow
FIGURE 31, TYPICAL 1,65 PRESSURE RATICG FAN MAP
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The maximum-cruise point for the QHF fan corresponding to 100% design air-
flow is shown in Figure 31 as point C' and lies along the constant maximum
cruise thrust line through point C. An 18% reduction in secondary nozzle
area is required to reach point C' from point A, Since quiet operation is
not important during maximum cruise operation, the maximum cruise operating
point could be chosen to lie anywhere along the maximum cruise thrust line
c-c*''. However, the surge margin for maximum cruise operating points with
airflow less than the 100% design flow value is considered marginal. Also
the amount of airflow in excess of the desiygn point value which can be
achieved is limited due to the high specific inlet flow at the design
point., The actual value of liaiting corrected airflow should be determined
durirg rig tests,

Maximum-Cruise Surge Margin

The data from two similar fan rigs with design tip speeds of 549 m/sec
(1800 ft/sec) and 625 m/sec (2050 ft/sec) have been used to construct the
high speed fan map for the QHF fan shown in Figure 32, Rotor performance

Surae Line _ ////

2.0 _
Compressor A
EffiCi}\w/’
MU 1-9 b= 819f//
o‘ /
F -
= 1.8 F 82%
& syv//// g
D 70
wv -
v
& A ::;//au%///
4
P ;////»’Q—\ !
1.6 L /85/6 n L10%
1.5 L
100% nN//g, Percent Design
Corrected Speed
1 | F \
90 95 100 105

PERCENT DESIGN CORRECTED AIRFLOW

FIGURE 32, QHF ESTIMATED HIGH SPEED PERFORMANCE MAP
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at 100% of design corrected speed is the 549 m/sec fan measured first rotor

performance and the stator performance is analYtically projected from 625
abeled "Surge Line" is a

state 549 m/sec fan data points nearest

m/sec fan stage stator

erformance,

straight line through the steadg
to the surge line at 90% and 100%
of the surge line is :onservative since:

The line

of design corrected speed.

This estimate

o Steady state data points could have been taken at a higher first

stage pressure ratio at both 90% and 100% of design corrected

speed, and

o The second stag

for surge at 9

e of the 549 m/sec fan was most likely responsible
% and 100% of design corrected speed

The performance at 105% and 110% of design corrected speed is obtained b¥

analytically projecting the performance of the 625 m/sec fan stage. Airflow

as a function of speed is obtained b{ holding rotor incidence constant, e.g.,
n

a 5% speed increase results in a 5%
inlet which is equivalent to an airflow increase of about 2.1%.

crease in axial velocity at fan rotor

At 110% of

design corrected specd, the efficiency is equal to that demonstrated by the
€25 m/sec stage at its design speed.

The point C'

in Figure 32 located at 100% of design corrected speed and an

R_ equal to 1,83, is the same cperating point as C' in Figure 31 and was

chosen as the maximum-cruise thrust cendition,

The same value

of thrust can

be obtained at points C' ' and C'' ' lecated at 105% and 110X of design
corrected speed, respectively. The surge margin* at these three points is:
Paint Surge Margin
¢! 7.7%
c 10.5%
crt+! 13.5%

1A e aat s Avee i

Since there is minimal inlet distortion in the QHF fan, an 8% surge margin
is considered adequate at the maximum-cruise thrust condition.

Surge Margin is defined:

Surge Margin = - 1.0 x 100

N - Constant
- V 0

fan pressure ratio

0
0
]

where:

corrected airflow

<
i

3 -

corrected speed

= surge line
= operating point

»
v
»

o w
.
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Approach Thrust Level, Typical approach thrust levels of approximately
30 percent for CTOL and 70 percent for STOL have been selected as repre-
sentative numbers for this study. The 30 percent thrust point represents
the lower range of the thrust requirements of typical CTOL transports.
The actual thrust requirements depend upon the type of alrcraft and the
ross weight during appioach; however these requirementc normally fall
?n the range of 30 to 50 percent (Reference 1], page 467). Recent industry
studies have indicated that for STOL application 70 percent thrust is
representative. Again depending upon the lift system used, the aircraft,
the gross weight, and the field length, this number can vary between 50
and 70 percent. The selection of the higher value for STOL and the lower
value for CTOL thus brackets the complete range.

Operating conditions shown by B-B' and D-D' in Figure 3] are those repre-
senting ?ow altitude approach, during which noise control is desired,

B-B' is obtained at approximately 30 percent thrust level, with conventional
mechanical flaps. As such, B-B' represents the lowest expected thrust

level during approach.

For STOL aircraft using augmented flaps for achievement of high lift, the
landing approach condition is represented by D-D' on the figure, which
occurs at approximately 70% thrust level. At this condition, the secondary
nozzle flow area need be increased only about 20%.

The approach and maximum-cruise operating points are identified as critical
areas to the QHF aerodynamic concept. At the approach point, the noise
reduction potential of the QHF fan rests on tke ability to achieve the
design point airflow, while at the maximum-cruise operating point, the
engine performance could be seriously limited by insufficient surge margin.
The QHF fan design, therefore, must consider the aercdynamic performance

at these operating points in addition to design point operation at takeoff
power.

The QHF fan can certainly be evaluated over this entire operating range
in the Lewis performance facility, W-8, and during aft noise testing in
the noise facility, W-2. A study of the losses expected in the exhaust
collector of W-2 indicate that forward noise measurements may be possible
only down to a pressure ratio of about 1,25, corresponding to 45% of
maximum thrust, This is as low an approach thrust as many aircraft would
reguire and should demonstrate that forward noise of the QHF fan is
independent of downstream conditions as long as the rotor is operating at
its design flow conditions,
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RIG FLOW PATH CONFIGURATIONS

A series of four rig flow path configurations were studied during the

QHF preliminary design. Various 3eometric and aerodynamic parameters for
these configurations are presented in Table 3 where the numberical designa-
tions indicate the chronological order of investigation. Configurations

1, 2 and 4 have essentially the same rotor which was designed for zero
radial total pressure gradrent downstream of the stage, while configura-
tion 3 rotor was designed for a 5% positive hub~to-tip total pressure
gradient at the rotor exit. In order to decrease rotor-stator interaction
noise, the stator leadin? edge was located two rotor chords from the

rotor trailing edge in all configurations. Configuration 1 stator row
consists of a single row of 7 inch chord vanes. To avoid choking the
stator row at the approach condition, the single stator row of configuration
1 was replaced in configurations 2, 3 and 4 with a tandem row with the
first vane resetable., Also, in configurations 3 and 4, the overall stator
chord length was increased from 178 mm (7 inches) to 229 mm (9 inches) to
reduce the response of the stator to rotor wakes and hence reduce aft-

radi ated noise. In configurations 2, 3 and 4 the stator chord and camber
were equally divided between the first and second stators,

TABLE 3. RIG FLOW PATH CC..7 IGURATIONS

CC 'FIGURAT I ON

1 2 3 b

Stator Exit 2¢" (10) 279.4 (1) 298.45 298.45
Tip Radius (11.75) (11.75)
mm, (in.)

Rotor Total Uniform Uniform 5% Uniform
Pressure
Gradient

Stator Exit 0.50 0.40 0.40 0.35
Mach Number
(Takeoff)

Stator Hub 0.54 0.55 0.60 0.60
D Factor
(Takeof f)

Stator Hub 1.0 0.95 0.82 0.90
Inlet Mach
Number

( Approach)

25
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onfiguration 1. Configuration 1 flowpath, shown schematically in Figure
53 has a constant tip diameter of 508 mm (20 in.) throughout the stage.
The stator hub exit radius was fixed at 146 mm (5.75 in,) for a stator
exit Mach number of 0,52 at takeoff. Radial distributions of rotor and
stator diffusion factors, shown in Figure 34, indicate moderate loading.
The rotor inlet is supersonic across the entire span as indicated in
Figure 35 where relative Mach numbers are plotted versus percent span,
Moderately high stator inlet Mach numbers at takeoff are shown in Figure 36.
Substantially higher stator hub inlet Mach numbers would exist at the
approach condition. An off-design calculation at the approach condition
yields a stator exit Mach number of 0.92 which is sufficiently high to
choke the entire annulus. For this reason, configuration | fYowpath was
discarded early in the preliminary design.
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FIGURE 33. SCHEMATIC OF CONFIGURATION 1 RIG FLOW PATH
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MACH NUMBER, M

FIGURE 38. STATOR INLET AND EXIT MACH FIGURE 39, ROTOR AND STATOR DIFFUSION

Confiquration 2. In configuration 2, shown in Figure 37, the exit annulus
area was opened up to avoid choking the ainulus at approach. Also, to
eliminate excessive stator hub loading at takeoff, the stator was moved
radially outward (stator exit tip radius = 27.94 cm (11 in,). Radial
distributions of stator Mach numbers and diffusion factors are presented
in Figures 38 and 39, respectively, The lower level of stator exit Mach
number (0.41) for this design is accompanied by higher stator loading;
however, the maximum loading level at the stator hub (D = 0.56) is con-
sidered acceptable., Stator inlet Mach numbers have been reduced sub-
stantially due to both increased annulus area and radial displacement of
the stator,
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As noted previously, configurations 2-4 incorporated tandem vanes. The
combined diffusion factor gor the tandem vanes was used as a limiting load-~
ing parameter in this investigation. Although a small increase in perfor-
mance has been demonstrated with tandem vanes!2, essentially no increase in
operating range has been achieved. The failure of tandem vanes to increase
operating range results because, contrary to theoretical calculations, the
rear airfoil loading does not remain constant as incidence angle changes.
Another contributing factor is thought to be the endwall bounsary layers
which are not regenerated in passing through the region between the vanes.

A detailed off-design analysis was made to determine the performance of
configuration 2 at approach. In the numerical solution for the approach
point flow conditions the total pressure distribution at the rotor exit
must be known. For this purpose, the assumption was made that the rotor .
exit flow angle distribution is independent of rotor pressure ratio at a i
particular rotor speed., The rationale for this assumption is apparent from '
Figures 40 and 41 where radial distributions of measured rotor exit totezl
pressure and relative flow angle downstream of the GMA 100 fan rotor are
plotted for stage pressure ratios of 1.70 and 1.46 at design speed. The
data shown in F?gure 41 indicates essentially no change in the rotor exit
reiative flow angle distribution with pressure ratio.
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PRESSURE RATIC

In calculating the approach point flow conditions, an iterative procedure
was used wherein an estimate of the rotor ¢ .it total pressure distri-
bution was made and the computed rotor exit relative flow angie distri-

bution was compared with the design point flow angle distribution,

Sub-~

sequently, the estimate of total pressure distribution was revised to
yield better agreement between the design point and computed flow angle
distributions.

This iterative numerical solution procedure is depicted in Figures 42 and
43 where three total pressure distributions and the corresponding relative

flow ang

ratio o

l']sO

le distributions are shown for the approach point stage pressure
The last solution corresponding to pressure distribution

3 yields good agreement between the design point and computed relative
flow angle distributions and is taken as the approach point solution.
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In all off-design cailculations it was assumed that the rotor total pressure
loss distribution was the same as at the design point. Cascade data shows
that the total pressure loss coefficient is essentially independent of
s*atic pressure ratio for the QHF operating range.

Configuration 2 stator inlet Mach number distribution at approach is shown
' In Figure 44, The stator inlet hub Mach number was considered sufficiently
' high to choke the hub, However, the steep inlet Mach number gradient
suggested that the high Mach number at the hub might be avoided by designing
for a positive hub-to-tip total pressure gradient downstream of the rotor

os at takeoff.
- "s.
X
m.
P @
x
n 2
£
P~
X
Oou ! A A ! -
0 20 40 60 B0 100
PERCENT SPAN FROM HUB
3 FIGURE 4&, STATOR INLET MACH NUMBER DISTRIBUTION AT

APPROACH~~ CONFIGURATION 2 RIG FLOW PATH
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Configuration 3. Configuration 3 flowpath, shown in Figure 45, was designed
for Esbo vé 6% hub-to-~tip total pressuré radient at the rotor exit. In

this case, rotor relative Mach number and diffusion factor distributions
differ only slightly from the previous designs. As predicted, the total
pressure gradient decreased the stator hub Mach number at approach; however,
the stator hub loading at takeoff increased sufficient'y so that the stator
had to be moved further out radially--stator exit tip radius = 29,85 cm
(11,75 in.). Stator inlet and exit Mach number distributions and diffusion
factor distributions are presented in Figures 46 and 47, respectively. A
substantial reduction in stator inlet hub Mach number is shown over the
previous design, while the stator hub loading increased slightly.

A concern in this design was the annulus wall boundary layer behavior between
the rotor and stator due to the large adverse pressure gradient. Skin
friction coefficients obtained from a Mellor-Herring turbulent boundary

layer calculation for both inner and outer annulus walls are presented in
Figure 48, Using the criterion C¢ = 0 for separated flow, these results
indicate no boundary layer separation.

Approach point flow conditions for configuration 3 flowpath were determined
in the same manner as outlined above for configuration 2. Stator inlet and
exit Mach number distributions at approach are presented in Figure 49, As
shown, the maximum stator inlet Mach number occurs at the hub and, as
predicted, its value (0,83) is much lower than that for configuration 2.
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The approach point flow conditions in the stators are further illustrated in
Figure 50 for varying first stator reset angle (negative reset angles are in
the direction of increasing blade passage area). The ordinate for these
curves, (A/A*)nin, Is the ratio of the minimum blade passage area, Ayi,, to
the critical throat area, A*, as determined by the Kantrowitz starging cri-
terion (A* is the choking area with 2 normal shock at the passage inlet).

In addition, the critical throat area calculation accounts for profile total
pressure loss, streamtube contracticn and nonaxial <treamiines., Values of
(A/A%): 0 less tha. 1,0 imply the blade passage is choked. As shown in
Figure éB the stator hub is choked ir both the first and second stator for all
va?ues of first stator reset angle, However, the radial distribution of
(A/A*)in, Shown in Figure 51 for -20° reset angle indicates that only a
small portion of the b?ade row 's choked, According to Figure 50, -20° reset
appears to be a near optimum reset angle in that it yields the smallest por-
tion of the blade passage area which is choked, .
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Another consideration in the preliminary design was the maximum local stator
blade surface Mach number at the approach condition., While high locally
supersonic Mach numbers are cujectionable from a performance standpoint,
they also provide a noise generation mechanism which should be avoided,
Since the stator hub represents the most severe condition in this regard,

a blade-to-blade flow analysis was made on the hub stream surface with -20°
reset on the first stator., The hub stream tube contained 10% of the full
passage flow. When choked flcw is encountered in the numerical solution

the flow is reduced to the point of incipient choke, indicating a radial re-
distribution of the flow, and a solution is made at the reduced flow. The
blade surface Mach number distribution, shown in Figure 52 was made at 98%
of the predicted hub-stream tube flow. The maximum blade surface Mach
number shown is approximately 1.2 which is considered within performance

and acoustic limits,
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A detailed off-design calculation was made at the maximum cruise point(pressure
ratio=1.83) to ensure sufficient surge margin. A concern at this operating
point was the stator row blade loading distribution. Again, it was assumed
that the radial distribution of rotor exit relative flow at maximum crvise
was the same as that at the design point. The same iterative numerical
solution procedure outlined above for determination of the approach point
flow conditions was used at maximum cruise, The radial distribution of the
combined stator diffusion factors at maximum crulse, presented in Figure 53,
shows an unacceptable level of blade loading at the stator hub indicating
that the hub would pr-_cbly be stalled. it should be noted that these
results are for the rig configuration in which the full rotor flow passes
through the stator. In the engine configuration (see Engine Flow Path
Section), the core flow does not pass through the stator and the stator hub
loading is substantially reduced.
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In order to demonstrate the engine operation at maximum cruise with the rig,
the maximum cruise operating point could be shifted from point C in Figure
32 along the constant thrust line C'-C!'' to a point of Increased flow. A
typical operating point would be at 103% design point flow and 1,80 stage
pressure ratio. In the numerical solution for the flow conditions at this
operating point it was assumed that the rotor exit relative flow angle

1 distribution was the same as that at the design point. Also, the rotor tip
1 speed, 591 m/sec (1939 ft/sec), was determined by assuming no change in
rotor inlet relative flow angle. Combined stator diffusion factors for

5 this condition, plotted in Figure 53 show a substantial reduction in stator

] hub loading (D = 0.65) and indicate that sufficient surge margin can be
3 achieved at this operating point.

3

Configuration 4. The fourth and last flow path configuration considered

Tn the preliminary design is shown in Figure 54, This configuration
represents an alternate attempt at reducing the stator hub inlet Mach number
. at approach by increasing the annulus area through the stator thus decreas-
ing the mean Mach number level through the stator. In this case, the

stator exit tip radius was held at 298.5 mm (11.75 in,) and the hub radius
was decreased to 144.8 mm (5.7 in.) to give 0.35 stator exit Mach number at
takeoff. Also, the 5% rotor exit total pressure gradient was eliminated

in favor of uniform stage pressure ratio., Stator diffusion factors and Mach
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numbers at takeoff are plotted in Figures 55 and 56, respectively. Com-
parison of these results with those 2or configuration 3 shows that while

the stator hub diffusion factor is about the same in both configurations,

the mean loading level is substantially higher in configuration 4, Also,
although the mean stator inlet Mach number level is lower in configuration

L, the stator hub value is considerably greater. Therefore, it is reasonable
to conclude that the stator hub inlet Mach number at approach would be

higher in configuration 4. This conclusion is substantiated in Figure 57,
where stator inlet and exit Mach numbers at approach are sufficiently high
that a large portion of the blade passage would be choked, Therefore
configuration 4 was eliminated from further consideration,
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Selection of Final Rig Flow Path. Configuration 3 was chosen as the final

design tor the QHF rig Tlow Eath. 0f the four flow paths considered,
configuration 3 represents the best aerodynamic design and demonstrates

the best off-design performance at the approach and maximum cruise operating
points. Furthermore, the acoustic design analysis indicated no signi-
ficant difference between configurations 3 and 4, which represented the

best acoustic designs.
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ENGINE FLOW PATH

An engine flow path ard the ri? flow path (configuration 3) are shown
overlaid in Figure 58. Both flow paths are drawn to the same scale for
comparison purposes., The engine flow path shown is a 0.337 linear scale
of the size required to produce the same thrust as the GMA 100/1 fan and
was obtained from configuration 3 rig flowpath by diverting 1/7 of the
rotor flow through the core engine and tracing the streamline which splits
the core engine and bypass flow to determine the hub contour of the bypass
duct. Detailed design and off-design analyses were made to determine the
engine configuration performance at takeoff, approach and maximum cruise
operating points. Comparisons of these results with those for configuration
3 rig flowpath follow.
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FIGURE 58. SCHEMATIC OF ENGINE AND CONFIGURATION 3 RIG FLOW PATHS

Radial distributions of the bypass stator diffusion factors and inlet Mach
numbers at takeoff are presented in Figures 59 and 60, respectively. A
substantial reduction in stator hub loading is indicated in Figure 59 for
the engine flowpath over the results for configuration 3 rig f?owpath shown
in Figure 47, However, little difference in stator inlet Mach number is
shown between the two flowpaths, Figures 46 and 60,
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At approach, the stator hub Mach number in the engine configuration (M = 0,725)
is much lower than in the rig flowpath (M = 0.825), as shown in Figures 49 and
61. At -20° reset on the first stator, both stators were unchoked over the
entire span.

At maximum cruise, the engine stator hub loading (D = 0,70) was substantially
lower than in the rig configuration (0 = 0,92), as shown in Figures 62 and
53, respectively, However, the stator hub diffusion factor was still mar-
ginal with respect to staliing the stator hub., Thus, an off-design analysis
was made at the maximum cruise thrust with the operating point shifted to
103% design speed and 1,80 stage pressure ratio, as out?ined for the rig
configuration in the previous section. |(n this case, the stator hub load~
ing (Figure 62) was well within loading limits indicating sufficient surge
margin is available.
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FIGURE 61. STATOR INLET MACH NUMBER  FIGURE 62. STATOR DIFFUSION FACTOR
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AIRFOIL DESIGN

The objectives which have to be satisfied to achieve a good rotor design are
low total pressure loss and structural integrity. Due to the high outer
span relative Mach numbers, low shock losses are difficult to achieve with
conventional multiple arc (MCA) airfoils, For this purpose, a new blade
type was developed for the Advanced Fan/Compressor Program and used in the
hrgh tip speed (HTS) fan first rotor (RI). This blade type incorporates
internal shock control and is referred to as the SCS airfoil.

The upper 40% of the QHF rotor is wholly supersonic and was designed using
SCS airfoil sections while the lower 60% of the rotor has subsonic relative
exit velocities and was designed with MCA sections,

From both the aerodynamic ond structural aspects, the QHF rotor was designed
to be similar to the HTS first stage rotor. Figure 63 shows a plot of the
QHF solidity versus percent span, Hub solidity was set to be the same as
the HTS RI. However, since the QHF rotor has a slightly higher tip relative
Mach number than the HTS RI, the tig solidity of the QHF rotor was increased
slightly to ensurz containment of the shock system within the blade passage.
For the chosen solidity and blade number, the chord distribution which
results is shown in Figure 64 along with the spanwise thickness-to-chord
distribution.

2.2 r
2,0 ¢t
(o)
- 1.84
o
=
w 1.64%
1.4 ) L " K ’

0 20 Lo 60 80 100
PERCENT SPAN FROM HUB

FIGURE 63. ROTOR SOLIDITY DISTRIBUT|ON
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Since the QHF rotor inlet value of specific flow is high by conventional
standards, the degree of assurance with which the fan can be expected to
achieve the design airflow is of particular interest, Two conditions act
as constraints on rotor airflow capacity under relative supersonic inlet
conditions; 1) average suction surface incidence angle, and 2) airfoil
passage starting margin. cxperience at DDA with other fan designs has shown
that the desired inc?dence angle is 1,5 degrees at a point halfway between
the blade leading edge and the first captured Mach wave for supersonic blade
sections, The start?ng margin constraint is equivalent to the Kantrowitz
starting criterion; i.e., rotor blade sections in supersonic flow are
designed with a starting margin (minimum blade passage A/A*) of not less
than 1.03. All DDA compressors designed and tested within the past four
ears have been designed using these criteria and have achieved the design
¥low rate within + 1% at the design speed. These results provide confidence
that the design fTow rate for the QHF fan can be achieved,

Results of the flow path analysis indjicate that the QHF statcr aerodynamic
design conditions are conventional. The vanes selected for the preliminary
design had double circular arc sections. Oue to the desirable acoustic
characteristics of long chord vanes, a low number of vanes was selected which
would satisfy the chord requirement and still give a reasonable solidity
di--ribution. With the number of vanes set at 10, the chord was set at the
maximum allowable value of 229 mm (9 inches).

In order to avoid choking the vanes at the approach condition, tandem vanes
were incorporated in the stator row with the first vane resetable, As
incidence becomes increasingly negative near the low pressure ratio end of
the operating line, the first vane is reset to keep tge incidence angle near
zero and to open the vane throat. The vane throat occurs at the inlet to the
passage formed by an airfoil and its adjacent airfoil,
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MECHANICAL DESIGN

The preliminary mechanical design had two primary objectives:

e Design a QHF test rig within an envelope which will fit the
NASA-LeRC Engine Fan and Jet Noise Facility (W-2) with either
the fan inlet or exhaust facing the open room. The test rig
will also fit the Single-Stage Aerodynamic Test Facility (W-8)
with the fan exhausting into the collector,

® Provide a continuing interaction with the acoustic and aero-~

dynamic designs to ensure that the concepts are mechanically
feasible.

FACIL!ITY-QHF RIG INTERFACE

A number of drawings along with verbal descriptions were furnished by NASA
to define the Engine Fan and Jet Noise Facility (W-2) and the Single-Stage
Aerodynamic Test Facility (W-8). This information was used to establish
the interface between the QHF rig parts and the existing facility. Atten-
tion was also given to ease of installation and NASA installation practice.
The results of this work are shown in DDA QHF Rig Installation drawing
SK16358, which has been delivered to NASA., Reduced copies of the drawing
are included in this report, Figure 65 shows the QHF fan installed in the
W-2 noise facility in both the inlet and exit noise positions. Figure 66
shows the QHF fan installed in W-8, aerodynamic facility. The rig-facility
interface has been defined by the drawing numbers of the NASA facility
parts comprising the mating surfaces,

The assembly sequence is to install the hub support, fairing, and rotor
components first. The case erit adapter spool [s installed next. The
split case with vanes installed will then be placed around the hub and
rotor components and bolted in place along both the circumferential and

longitudinal split lines, At this point the installation is complete

except in the noise facility. |In the inlet position a bell mouth will be
required. In the exit noise position this installation will require an
inner flow path fairing followed by an inner exit cone, The exit noise
installatior wili be completed by bolting on the discharge loading spool
to form the outer exit flow path,

It is anticipated that the configurations shown in Figures 65 and 66 may be
subject to minor change during final design, For example, circumferential
surveys may be needed at the vane exit, This can be accomplished by minor
configuration changes in the area of the case aft face and exit adapter
srool to avoid interference with the CC 848389-25 loading valve. Although
this detail design [s not part of the current task, it is intended that the
preliminary design can accommodate such changes,

MECHANICAL FEASIBILITY

DDA has successfully completed the design, fabrication, assembly, instru-
mentation, and test of several high tip speed compressor and fan rigs.

These include 406 mm (16 in,) diameter XC9 and XC16 single-stage rigs and
the XF26 which was a two-sta?e 365 mm (38 in,) diameter fan. All of these
rigs have operated successfully at the same mechanical tip speed as required
by this program. The preliminary mechanical design is based upon using
components that are similar to those which were used in these rigs. The
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area requiring the maximum attention is the rotor blade airfoil and re-
tention. The blade is frequently subject to problems of vibration, flutter,
stress, and configuration change caused by aerodynamic and mechanical load-
ing. The preliminary aerodynamic design is based upon using a scaled
version of the first stage XF26 blade. [t is anticipated that little or

no fine tuning will be required as the result of complete mechanical analysis
during final design. Blade retention can utilize either a stalked or non-
stalked blade. Both have been used successfully in hiqh speed rigs and
there is sufficient material in the wheel rim for 24 slots. |In the event

a non-stalked blade is selected for the final design, care must be taken to
ensure proper fore-aft restraint of the ramp forces. Also, care must be
taken to make certain that any base change from the scaled version does not
have an adverse affect on the overall blade vibratory characteristics. The
preliminary design anticipates the use of a non-stalked blade fabricated
from annealed 6-2 Ti (AMS 4967) bar stock. It is planned to use a steel
whee! of rig type design. D6AC steel (AMS 6431) is a likely choice since

it combines high strength with reliable fracture toughness. This will
provide good strength margin, allow modification for instrumentation,
provide shear lips for attachment of rotor balance weights, allow for
fasteners to react blade ramp loads (fore-aft), and provide a stable surface
for attachment to the NASA rotor parts,

An important consideration during final design will be the analysis of the
wheel to adapter pilot. The exact size and material of the NASA adapter
must be furnished so tha* the wheel can be sized to make certain that the
pilot interface does not separate at high speed., This pilot must have
contact to keep the wheel centered and thus avoid rotor unbalance,

The length of the case assembly has been sized so that one part can be used
in the three applications. This is accomplished through the use of adapter
spools which fit the various NASA facility mounting structure. It is
planned that the case be a thick wall, rig type structure with a longitudinal
split line. The split line will allow the case with vanes in place to be
installed around the assembled rotor and hub., wWhether the split line is
horizontal or otherwise will be set by NASA preference for ease of installa-
tion. The two rows of ten vanes will be positioned by a vane stem extending
through the case and individual lever arms on the outside of the case, The
lever arms will provide a means of individual vane reset when the rig is
installed for test, Both the features of positioning and use of a cantilevered
vane have been demonstrated on previous high tip speed rigs. The number,
size, position, attachment, and reset of the vanes is compatible with the-
case split lines, One area which will require attention during final design
will be the gap between the vane airfoil and flowpath. Reset of large

vanes througﬂ large angles involves significant arc drop, The basic plan

15 to favor the high power settings so that maximum gap occurs at low power
position. In the configuration for the noise facility fan exit noise
position, a portion of the inner flowpath fairing is supported by the vanes.
This design approach is similar to the inner seal bands used on the XF 26
fan rig. In the other two arrangements the inner hub fairing is attached

to the NASA hub support near the rotor wheel, The aft end of the fairing

is positioned and supported by the same hub support. It is planned to use
an "0" ring for the actual contact between the two parts., This will allow
for part and assembly tolerance stack,

There are three other components which will be described briefly. The
case-to-facility adapter spools are lathe turned parts with pilots to match
the case and facility, The fan exit noise configuration requires an inner
exit cone, This will also be a formed and welded sheet metal assembl
bolted onto the case. An adjustable three-location nozzle will be boYted
to the inside to provide a method of loading the fan,
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ACOUSTIC ANALYSIS GF CONCEPT

The purpose of the acoustic analysis was to determine quantitative noise
reduction benefits of the QHF fan compared with a conventional fan for CTOL
aircraft, This analysis was ﬁerformed using DDA empirical and theoretical
noise prediction programs. The empirical noise prediction program is
extensively detailed in Reference 6t and is capable of describing EPNdB con-
tours for typical flight operations., The empirical computer program was
derived from data for conventional fan en?ines therefore, appiication to
include the effects of the QHF's near-senic infet and long-czord exit vanes
regulres inputs from the DDAD theoretical noise predicti~n program. The
effects of these two advanced technology aspects of the QHF fan were cal-
culated (relative to conventional fangg using the theoretical program and
factored into the empirical program, The results of the noise analysis for
both the QHF fan rig and a QHF Tan engine are presented in this section.

COMPARISONS WITH CONVENTIONAL ENGINE

Conventional high-speed fans currently used in CTOL aircraft produce highl
annoying noise levels in the vicinities of airports. Projected noise levels
of the QHF fan, scaled to full size and utilized in a CTOL application,
indicate that much of the annoYance roblem will be alleviated by this ad-
vanced technology fan. Comparisons have been made of the projected noise
levels of the QHF fan and a conventional hiah-speed fan, tﬁe GMA 100/1,
o?eratigg on typical CTOL takeoff and approach flight paths, as shown in
Figure 6/.

87.5 m/s (170 kts)
»

4"”’
15.2 (50 ft) Barri -~
2m arriers
68.9 m/s (134 krs) 4
’-h§~ //’ 113 mrad
T — (6.50)
52.4 mrad

3°) ’-—-—2.1 km (7000 ft.)—

Takeoff

Approach

FIGURE 67. TYPICAL CTOL FLIGHT PATH
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Figure 68 is a plot of .(he distributed perceived noise level (PNL) for a

straight and level flyover of the QHF fan scaled to GMA 100/1 fan size,
mated to the GMA 100/1 gas generator, and operating in a two engine, 9072 kg
(20,000 1bm) thrus* class, 6:1 bypass ratio, 79379 kg (175,000 Ibm) M.T.G.W.
airplane at takeoff conditions. The flyover altitude of 509 m (1670 ft)
corresponds to the altitude at 6.48 KM (3.5 NM) from brake release of an
airnlane flying the takeoff path detailed in Figure 67, The observer is
located direct?y beneath the flightpath, Also shown on the figure is the
effect of core noise (no core noise implies fan alone). The Beak level of
93 PNdB occurs in the rear arc since Tﬁe QHF fan engine will be jet exhaust
dominated at takeoff. Eliminating core noise from the source levels reduces
the peak level approximately 3 dB.
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FIGURE 68, QHF FAN ENG'NE DISTRIBUTED TAKEOFF NOISE LEVELS
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Figure 69 is a simiiar curve for the same two engine airplane during

approach at 30% of takeoff thrust. The flyover altitude of 113 m (370 ft)
corresponds to the altitude at 1.85 km (1 naut. mile) from the end of the

runway for an airplane flying the approach path detailed in FiEure 67.
. The peak
PNL of 99 dB occurs in both the front and rear quadrants. The approach

Again, the cbserver is located directly beneath the flight pat

levels are higher than the takeoff levels due to the nearness of the air-

plane tc the observer. With no core noise, the approach distribution

becomes forward arc dominated and the peak level is reduced only approxi-
mately 1 dB since the core engine has little effect on the front arc noise

levels,
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2 4
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FIGURE 69. QHF FAN ENGINE DI&TRIBUTED APPRCACH NOISE LEVELS
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Noise contours provide a method of describing the area of annoyance in the
vicinities of airports. Contours for a 79379 kg (175,000 lbm) M.T.G.W.
airnlane with two QHF fan engines operating on the flight path of Figure 67
are presented in Figure 70 w?th and without core noise for a level of 100
EPNdB. As will be seen later, the exposure areas are much smaller than the
areas for conventional fans, and in many cases the SHF fan engine 100 EPNdB

contours would be contained within the airport boundary.
i
i 2
i Enclosed Area — km~ (Acres)
| QHF Fan Engine: Takeoff Approach
| With Core Noise 1.1 (272) .12 (29)
_____ Without Core Noise .68 (169) .03 (7)

Sideline Distance
km  fe x 1075

[S]
o
W
.
"

s 4 20 7 4 6 8§ 10 12 14 16
£t x 1073 £t x 1073

Distance to Runway Distance from Brake Release

FIGURE 70, COMPARISON OF THE 100 EPNL NOISE CONTOURS FOR THE
QHF FAN ENGINE WITH AND WITHOUT CORE ENGINE NOISE

Comparisons of the distributed PNL's for the QHF fan engine versus the
GMA 100/1 fan engine (including core engine noise) are made in Figures 7]
and 72 for takeoff and approach. The effect of the near-sonic inlet at
takeoff is apparent in Figure 72 due to the difference in front arc level.

; Since the gas generator is the same for both engines, the jet and core

. noise leve?s are equal and the rear arc difference is attributable to the

v long-chord vanes. The increased difference in noise levels at approach

\ (Figure 72) is due to the fact that the QHF fan operates at a lower

pressure ratio and with less blade loading while maintaining the near-
sonic inlet condition.
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The enclosed 100 EPNdB contour areas of the QHF fan engine are 82% smaller
than the conventional GMA 100/1 fan engine at takeoff, and 97% smaller at
approach, The contour comparison is shown in Fi?ure 73. The QHF fan engine
is also projected to meet FAR Part 36 noise levels without the need for
acoustic treatment. Estimated noise levels (EPNdB) for the QHF and GMA
100/1 fan engines and corresponding Part 36 goals are:

S

MEASUR I NG

STATION GMA 100/1 QHF FAN ENGINE PART 36 GOALS
Takeoff 99.5 92.5 97.0
Approach 110.2 95.9 104.0

These values of effective perceived noise levels are for two engine aircraft
on CTOL flight path. The aircraft have maximum takeoff weights of 79,379 kg
(175,000 1b). There is no acoustic treatment and no ground attenuation,

Enclosed Area, knz (Acres)

Takeof £ Approach
e GMA100/ 1 6.04 (1493) 4.09 (1011)
wwee.QUF Fan Engine 1.1 (272) 12 (29)
Sideline Distance 3
ke ft x 197
)
14

Snymagr—————_ L LY
= /—:x
Ly =

1 4
3 5 )

— L ' i A . - A o (1 A iy 'y
6 5 4 3 2 1 0 1 2 3 4 6
kn kn
- A 4 A A A A A ']
20 15 10 5 0 S 10 15 20
£ x 107 fe x 1070

Distance to Runway Distance from Brake Release

F _'E 73. COMPARISON OF 100 EPNL NOISE CONTOURS
. INCLUDING CORE ENGINE NOISE

RIG NOISE PREDICTION

The expected QHF 508 mm (20 in.) rig noise levels on a 5 m (16.4 ft,) radius
are shown in Figure 74 on an OASPL versus angle basis for takeoff thrust.
Forward irc nojse levels are for fan inlet noise only, while rear arc levels
are for the fan exhaust plus fan jet, The effect of jet noise on the rear
arc levels is to make the rear arc peak OASPL approximately 10 dB greater
than the front arc peak level., The predicted front and rear arc fan peak
spectra for takeoff thrust are shown in Figure 75, The computer program
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used for noise prediction covers the frequency range from 50 to 10,000 Hz
which includes only the QHF fan rig's fundamental tone, The low frequency
jet noise and the disappearance of a strong fundamental tone is noteworthy

in the rear arc,

Estimated OASPL's at approach thrust (30% of takeoff thrust) are shown in
Figure 76, The combination of lower fan pressure ratio, reduced blade *
loading, and lower jet exhaust velocity make the resulting OASPL's 8 dB

less in the front arc and 17 dB less in the rear arc than at takeoff thrust.
Estimated approach thrust fan peak spectra (Figure 77) show front and

rear fan noise levels essentially the same with the exception of forward
propagated multiple pure tones and fundamental tone. Low frequency jet
noise is again apparent at approach.
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SUMMARY OF RESULTS

The results of the acoustic design studies can be summarized in terms of a
series of guidelines for the aerodynamicist to follow for the development
of a quiet, high speed fan:

Maintain high specific flow through fan
Increase rotor relative exit angle
Minimize the number of stator vanes
Increase stator chord

Reduce stator camber

Changes in other geametric and aerodynamic parameters produced insignificant
changes in noise generation and radiation,

Results of the flow path analysis indicate that the QHF stator aerodynamic
design conditions are conventional. The vanes selected for the preliminary
design had double circular arc sections. Due to the desirable acoustic
characteristics of long chord vanes, a low number of vanes was selected

which would satisfy the chord requirement and still give a reasonable

solidity distribution. With ten vanes, the chord was set at 229 mm (9 inches).

In order to avoid choking the vanes at the approach condition (low pressure
ratio), tandem vanes were incorporated in the stator row with the first vane
resetable. As -incidence becomes increasingly negative near the low pressure
ratio end of the operating line, the first vane is reset to keep the incidence
angle near zero and to open the vane throat. The vane throat occurs at the
inlet to the passage formed by an airfoil and its adjacent airfoil.

Enclosed 100 EPNdB contour areas of the QHF fan engine are 82% smaller than
the conventional fan engine at takeoff, and 97% smaller at approach. The
QHF fan engine is also projected to meet FAR Part 36 noise levels without
the need for acoustic treatment,
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APPENDIX

PREDICTED BLADE ELEMENT PERFORMANCE

Blade element performance data at the design point are contained in this
section. Data are given in both metric and customary English units with
each data set prefaced by a units definition table. Interblade row
computing stations are shown in Figure 78,
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FIGURE 78. COMPUTING STATIONS FOR CONFIGURATION 3
RIG FLOW PATH
TABLE 4
UNITS DEFINITION FOR TABLE §
METRIC OUTPUT
QUANTITY DIMENS | ONS
Length Centimeters
Velocity Meters/second
Pressure Kilopascals
Temperature Degrees Kelvin
Flow Angle Degrees
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RALTUS

6. 347

&

41T

~ b2l
L.960
Te374
7.8°7
B.4a67
9.06R
9.772
10,485
11.240

AYIAL
VELIW.ITY
L46.%
“ah .0
4446 ,8
h43,3
42,8
442,17
L45,)
4486 .0
G644, 7
440,2
431.7

vHIPL RADI AL
VELOUTTY VELDCITY
42 5 8B.94
423,86 3x,RR
415.5 AR.52
404,90 87.59
3pQ,5 84.30
373,7 R4, 78
367.1 83.16
342,.4 21.08
33l.4 77.88%
325.7 72.37
325.0 61,94

TABLE 7.

(CONTINUED)

STATION 3-3, STATOR 1 INLET

TOTAL
PRESSY
23.75
23.77
23,83
23,93
24.05
74.21
24,37
24,53
26,71
24,89
25.06

»
"~

-
c

ST2TIC
PRESSURE
19.55
19.¢0
19.74
19.55
20.19
20.45
20.71
20.97
21.23
21.50
21.78

TFMPFRATURES
TOTAL STATIC

599,.8
630.1
601.1
602.8
604.7
607.0
609.3
612.0
615.8
621.0
628,1

ShT.b
$68.0
569.7
572.2
575.2
578.4
58l.6
585.2
589.7
595.6
603.5

ABRSDLUTF
VELNCITY

622.9
621.5
616.1
60A.1
596.0
585.9
576.5
56B.1
56J.2
552.4
545.9

AdSDLUTF
MACH \N©

0.534
0.532
0.524

<517
0.507
Je497
0.4R8
0.479
V6Tl
D.462
0.452

MER,

VELOEITY

455.
455.
454,
452,
451a
451.
453.
453,
451.
446,
436.

PEFCENT

<pan
2.7
1.?P
5,0
12.5
21.2
2l.7
L3,4
56.3
70.0
R4.5
o9, 8

Eec e
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RACIUS

Le9ES
1.04%7
Te274
7.613
8,037
8.527
9.066
9.646
10,259
1J.818
t1.501

AXTAL
VELDCTTY
323.7
330.5
353.4
377.0
368,5
417.3
432 .4
L4é¢ .G
45R,. 7
409,.5
47949

ABSULUTS  MACH NO
INLET
0.534
0.532
0.520
0.517
0.507
J.497
n.ea8
0.479
0.471
0.462
0.452

Sel.

D

EXIT

0.z¢83
0,290
0.3CS
0.329
0.347
v.3€2
0.374
0.38%
V.292
0.362
0.405

IFFUSINN
FACTOR
0.€%6
0.483
Ce 040
0.59%
0.554
0.519
C.4%0
D.4F8
0.452
Jeb4l
0.436

WHIRL

®

ANTAL

VELOCITY VELNCTITY P

34 .4
gé .1
90.2
93.4
$5.3
S5.1
93.5
91.4
A9, 3
89.13
S0e”

m. d_rJ
TEMP
el
al
82
a4
Ré
B8R
90
S3
97
102
109

oMEGA
3P

0,157
Je 151
O.116
0.08%4
0.057
N.039
0,028
0.025
0.027
Ve033
0.044

TAL
RISE
.12
«45
.43
.07
«05
«29
.57
«32
<06
28
.39

DELTA
bS/0D

0.544
0.535
G.518
O.%8¢
0,451
0.408
0.362
0.314

cGe?63

v.208
0.165

43.35
L4 hE
“7.64
5).,08
50.92
50.03
47.h6
44.05
39,51
34.01
27.33

TOTAL
TEMP RA
1.156
1.157
1.159
1.162
1.1654
1.17)
1.175
1.1R0
1.187
1.197
1,211

souiIotT
1.076
L.06%
1.031
0.98%
0.929
0,813
0,R17
.76
0.715
0.670
0.628

TABLE 7.

(CONTINUED)

STATION 4-4, STATOR 1 EXIT

TCTAL
<ESSURE P
23.99
23.14
24.36
23.6)
23.84
244,05
24.26
24.45
24461
24,77
24.91

WHEEL
TIiO IN

0
0
0
0
0
J
0
0
o
0
0

Q0000 LOOCOO

TOTAL
Y TURNING
28,57
28459
28,23
27.917
21.47
26,87
26.16
25.55
25.26
25.39
26.06

STATIC TEMPFRATURES ABSNOLUTE ABSOLUTF
PESSURE TOTAL STATIC . VELNCITY MACH NC,
21.83 599.8 593.3 337.4 G.283
21.73 600.1 590.3 344.7 D.252
21.R6 601.1 589.9 367.9 0.30%
2170 h02.8 590.0 391.6 0.329
21.94 604.7 530.6 412.9 0.347
2l.98 607.0 591.5 431.0 0.362
22.03 609.3 592.7 446,0 0.374
22.09 €12.0 594.6 458.3 0.384
22.14 615.8 597.5 469.1 0.292
22.20 621.0 601.9 479.1 0. 399
22.26 628, 1 6C8,2 489.1 0.405
STAGE STAGE STAGE
SPEEN PRESSURE ADIABATIC PCLYTROPIC
nyTr RATIO EFFICIENCY EFFICIENCY
0.0 1.571 88.1 86.8
0.0 1.575 AR,2 _  @8],9
2.9 1.589 89.1 89.7
0.0 1.606 89.4 °0.0
0.0 1.622 89.3 90,0
b IRY] 1.637 88.8 Ao, 5
0.0 1.6%1 PR, Z 88.9
0.0 l.664 87.0 87.1%
0.0 1.675 84.8 85.8
0.0 1.685 8l.5 82.7
.0 1.665 T7.1 18.7
ADSOLUTE EQUIVALENT
FLOW ANGLE DIFFUSION
INLFT £XIT FACTAR
42,14 14.5¢ 1.794
42.9T lb.%7 1.792
k2.49 14.21 1.783
41.80 13.83 1.773
40.81 13.34 1.760
39,62 12.75 1.747
38.27 12.19 1.732
37.07 ll.51 1.725
36,20 11.03 1.729
36,13 10.74 1.749
36.69 10.65 1.787

MFR . PFRCFNT  S.Ll.
VELDCITY SPAN *0.
327. 0.3 1
334, 2.1 3
387, 7.C 5
380. 14.3 7
402. ?3.5 9
420. 34,1 11
435, 5.8 13
449. 58.4 15
450. 71.6 17
“71. 88,5 15
481, 99.8 21
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s
9
11
- 13
|
17
H
21
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