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ABSTRACT

The concept of dynamic equilibrium of control in
conjuction with a proportional corrector constitutes the
structure of the new control technique. The controller
utilizes direct measurements and model-based state estimations
in the feedback loop. The method includes recovering
unanticipated parametric variations or partially unknown
dynamics. An application of this approach to the axial xenon
oscillation problem of PWRs was considered. A two-point xenon
oscillation model was used in designing the controller and
testing it through simulations.

1. INTRODDCTION

This paper presents a nonlinear control technique for
trajectory following processes including unknown parametric
deviations or partially unknown dynamics. Recent studies
entitled "inverse problems in dynamics" [1] address solution
techniques in which the controls are calculated for assigned
trajectories. The embedded predictive models [2] use inverse
models and calculate controls numerically.
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In this study, we introduce the use of dynamic equilibrium cf
control which exerts a dissipative control force against the
open-loop dynamics. These forces appear when a system leaves
its (minimum-energy) stable-equilibrium point due to soir.e
excess energy. The control is completed by reconstructing the
dissipated dynamics for assigned trajectories. Compared with
related methods in the literature, the dynamic equilibrium of
control corresponds to a partial inverse dynamics of the
complete trajectory following dynamics and recognizes the
minimum effort to achieve continuous equilibria.

It is a well-known phenomenon that pressurized water
reactors (PKH) exhibit xenon induced power oscillations.
Analytical studies [3] showed that the nature of
nonlinearities are quite complicated and may go beyond the
control capability of reactor operators. During plant
operations, the axial power oscillations are avoided by
lowering the power to some economically undesired levels. In
this paper, it is not intended to propose a new complete
control strategy for the xenon oscillation problem of PWRs.
This application introduces the concept of dynamic equilibrium
for the compensation of complicated nonlinear behavior like
the xenon oscillation using a simple model. However, the
superior results indicate that the methodology may find a real
application in this field.

2. CONTROL DESIGN

The method includes two design phases: control and
adaptation, both utilizing a set of process measurements and
model-based knowledge. The final form of controller is a
combination of the two, determined by the availability of
sensory information and the importance of the unknown part of
process dynamics. Partially unknown dynamics is defined here
as mismatches between actual process behavior and predictions
obtained by analytical methods. Such mismatches may be due to
time-dependent unknown parametric deviations, which are
assumed to be constants in dynamic models, or by the lack of
mathematical representation of the actual physical behavior.
The control system is shown in Figure 1, including the flow of
important system variables. The following describes the basics
of these two design steps.

2.1 Control Phase

Consider a dynamic system bounded by a set of predefined
trajectories. In state space representation, a nonlinear
system is stated as
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Figure 1. Block-structure of ••Reconstructive"
nonlinear control system.
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X = f(X,U) (1)

where X and ~U are state and control vectors, respectively. We
then concentrate on the i-th state equation assuming that a
fixed trajectory was assigned to this state variable.

L i ^ i , j=l,2,..,N (2)

where

X^ = ith state variable,
Xj = coupling state variables,
Uj_ = ith control variable,
N = number of state equations.

Next we define the dynamic equilibria of U^ and of a
selected coupling state Xj in case U^ does not exist provided
Uj (any other control) exists which i£ an implicit function of
the selected coupling state Xj (controllable path).
Establishing dynamic equilibrium of a selected coupling state
can also be used to overcome multiple-equilibrium problem
(same control appearing in more than one dynamic equation).
The dynamic equilibria are,

U i E = f(Xi,XifUiJf. (3)
lxi=°

(Xj ) F = f'fXjL^j) . (4)

where

Xj = selected coupling state variable,
E = subscript indicating equilibrium.

Evaluating the functions in Eqs (3) and (4) for x^-0 and
solving for the control and for the selected state variable
will yield time-variant equilibria that are not functions of
U^ and Xj , respectively. We then introduce the desired
trajectories to be followed by the process and associate it
with control through the following definition of a total
weighted errors,

. i i i E i i R i (5)

and

E*- [Qi(Xj*-Xj*E) +R i(X i-XR i)] (6)



vhere

XRi= desired trajectory for i-th state variable,
Ri»Qi = weights.

Note that the state variables and controls are
normalized, nondimensional variables. Equation (5) does not

e
variaoxe or by simply using Uu when UJ " does not exist. The
controls are solved from Eqs. (5) and (6) by forcing E or E*
to go to zero.

UL = f

or

(7)

i*> (8)

*Xj" = f»(Xi,Xj) (9)

where

U-: = any other control (j=l,2,...,N ;
Ki ~ tRi/Qi) adjustable gain.

The final form of the control includes a dynamic equilibrium
term which works towards dissipating the excess energy of a
dynamic system between equilibrium and nonequilibrium points
and a proportional term which forces the system to "rebuild"
its dynamics in a desired form. It can be shown analytically
that control (7) guarantees stability for linear systems.

The control design stated by Eqs.(7), (8) and (9)
requires that the state variables that appear in these
equations are directly measured or accurately estimated. If
all the states are accessible through a measurement set, then
the unanticipated transients (like state disturbance) will be
recovered automatically by the dynamic equilibrium of control.
If some of the state variables are estimated using
mathematical models then the parametric deviations may affect
the controller performance severely. This problem holds for
every model-based control scheme and can be overcome using
several adaptive techniques available in the literature [4].
We proceed with the second design phase, including adaptive
features to predict the unknowns of the process.



2.2 Adaptive Phase

We introduce an adaptive philosophy for which the tracked
parameters are used to update the control but not the model.
In ether words, the model provides a reference state similar
to the model-reference adaptive control technique.

Consider process dynamics and its corresponding
mathematical model in which the model assur.es constant
parameters that are time-variant in the actual process,

X ' — f f X ' X ' U ' Y * ) ( 1 0 )

a n d
«

M ^ ^ (luf Vf XT V ^ f T 1 \

where

Yi = time-variant parameter,
Mi = i-th state variable of the model,
Mj = coupling state variables of the model,
Vi = control in the model,
Ym = constant parameter used in the model.

i/ote that the control Vi of the model would exactly match
^ if Yi did not change in time. Considering the first case
where Ui exists, we present the following error criteria

B - CQi(Yi-Ym) + RifUi-Vi)], (12)

and a solution for Y^*

= Ym - Ky[(UiE-ViE) + Kim<Mi-XRi) - Kix(Xi-XRi) ], (13)

where Ky, K±m and Kj,x are adjustable constants. The solution
(13) includes dynamic equilibria which may include unknown Y^,
ang will be updated by Yi . The control Ui is a function of
Yi •

The second case where Ui does not exist, the time-variant
Yt can be considered as partially unknown dynamics provided
the corresponding state measurement is available. A solution
can be obtained by treating Yi as a control variable
associated with a state trajectory, which is continuously
provided by the model. An error expression is written in the
following fashion.



A solution for Yj_* is obtained,

Yi " YiE KyCXi-Mi) (15)

where

Y
i E

* (16)

The Eqs. (15) and (16) are then used in UJ if it is a
function of Yi .

The design procedure stated above may require assigning
additional trajectories not included in the frame of control
tasks. This will be necessary when the estimated states
include time-variant parameters and there is no trajectory
following assignment to those states. In this case, the
additional trajectory assignment can be selected intuitively
provided it is close to its steady-state value. Note that the
number of trajectory assignments can not exceed the number of
degrees of freedom of the system.

3. AN APPLICATION TO THE XENON OSCILLATION PROBLEM

A two-point xenon oscillation model of a PWR [5] is used
to demonstrate the method of "reconstructive" control. The
model employs the nonlinear xenon and iodine balance equations
and one group, one-dimensional, neutron diffusion equation
having nonlinear power reactivity feedback. A two-term
spatial, harmonic-series solution was assumed for the flux,
xenon and iodine distributions. The system was made as close
to critical as possible with assumed distributions using a
variational principle. The xenon and iodine concentrations
were then obtained from their governing differential
equations. The input/output nature of the model makes it ideal
for simulation of xenon-induced reactor transients. In the
model, the spatial average of the normalized flux for the
lower half and for the upper half are expressed by the
following equations.

^ - 0.6366 [1 - A(t)] (17)

F2(t) « 0.6366 [1 + A(t)] (18)

where



F,,F2 = upper and lower half average fluxes,
A(t) -= amplitude of the first harmonic.

Similarly, the average xenon and iodine oscillations in
the upper and lower part of the core are expressed as

Xx(t) = 0.6366 [1 - B(t)] (19)

X2(t) = 0.6366 [1 + B(t)] (20)

Yx(t) = 0.6366 [1 - C(t)J (21)

Y2(t) » 0.6366 [1 + C(t)] (22)

where

X^ = average xenon concentration in lower-half,
X2 = average xenon concentration in upper-half,
Yj = average iodine concentration in lower-half,
Y, = average iodine concentration in upper-half,
B(t)= xenon amplitude function,
C(t) = iodine amplitude function.

The amplitude functions described in the literature [5]
satisfy the following equations.

-Z2(t) A
2(t) + 2(Z1-Z3) A(t) + Z2(t) - 0 (23)

= ax A(t) - a2 C(t) (24)

= [a3 - a4 B(t)] A(t) - a5 B(t) + a6 C(t) (25)

Z2(t) = a7[R2(t) - + a8 B(t) (26)

and

Z^Z^a^ « neutronic and geometric constants,
R2(t) » reactivity input with upper partial-length

control rod,
R1(t) - reactivity input with lower partial-length

control rod.



The control task is determined such that the amplitude
functions -B(t) and C(t) rercain constant (close to a fixed
trajectory) which guarantees nonoscillatory flux response. The
solution for [R^Rj^ (relative reactivity input with respect
to upper and lower halves of the core) is obtained using the
method described by Eqs. (7) and (9) . In this example, two
"coupling" states are chosen due to the fact that there are
two differential state equations both without any direct entry
of controls R^ and R2. First we select C (t) in Eqn. (25) and
establish dynamic equilibrium forB(t).

a5 B(t)/a6 - [a3 - a4 B(t)] A(t)/a6 (27)

C*(t) = C*EQ(t) - K-L [B(t)-Bd(t)] (28)*(t) C*

where Bd(t) is a desired trajectory, close to its steady-state
value. Then we establish a dynamic equilibrium in Eqn.(24) for
C(t) by selecting A*(t).

A*EQ(t) = a2 C*(t)/a3 (29)

A*(t) = A*EQ - K2CC(t)-Cd(t)J (30)

The final step is to use A*(t) in Eqs. (23) and (26) to
solve for

2(Z, - Z3) A* a8 B(t)
[R2(t) - Rx(t)] - — - - . (31)

a7[l - (A*)
2] a7

Note that in Eqn. (31) , A* should not be equal to 1 at
any tine. It can easily be seen from Eqn. (23) that A =1 does
not satisfy Eqn. (23) due to Z^Zj. In applications where
such condition can not be established easily, the control
signal can be protected by numerical methods or another
strategy of achieving equilibrium can be used. The gains Kj
and K2 were arbitrarily chosen both equal to 100 in this
application.

4. SIMULATION RESULTS

Two-point axial xenon oscillation model is first
simulated without control. Figure 2 shows the normalized flux
amplitude in the lower half of the core for the Oconee plant.



i 1 1—r, 1 1

.75
10 15 80 25 30 55 40 45 50 55 $0 66 70 75 80 85

TIME (HOURS AFTER PERTURBATION)

Figure 2. Time plot of model response compared with
observed axial oscillation at Oconee Nuclear
Station. [5].



Results of Ref[5] and our simulation are compared. The dotted
curve shows the'time response of the Oconee reactor during
xenon oscillations. The reactor had been operating at 75% of
full power with steady-state xenon prior to the perturbation
(which lasted 2.5 hr.) by means of control rods. Figure 3
shows the xenon, iodine and flux oscillations in the upper
half of the core for those conditions in which the dynamics
exhibits a limit cycle behavior.

The controller is turned on 30 minutes after the 2.5-hr.
perturbation. As shown in Fig.4, flux, xenon and iodine
oscillations are compensated rapidly. Figure 5 shows the
reactivity insertion using an upper partial-length control
rod. The 2.5-hr, perturbation (about 1% worth of reactivity)
is also performed using partial-length rods and appears as the
initial pulse in the same plot. Comparing this "perturbation"
pulse with the rest of the curve indicates that the amount of
rod motion is reasonably small.

In order to demonstrate the effect of "dynamic
equilibrium of control", the controller is turned off for 17
hours following the perturbation and then turned on. Figure-6
indicates that the controller suddenly perceives the dynamic
equilibrium point and acts accordingly. As shown in Fig. 7,
the required rod motion is much larger compared to the
previous case which agrees with intuitive reasoning. Figure 8
shows xenon-iodine phase-plane graphs of uncontrolled and
controlled (after 17 hrs.) reactor. The limit-cycle behavior
of the uncontrolled plant is exhibited.

5. CONCLUSIONS

The application of the "reconstructive" control technique
to an axial xenon oscillation problem clearly emphasizes the
effectiveness of using dynamic equilibrium of control. The rod
position (or reactivity input) changes in small amounts over a
large interval of time, mapping the equilibrium trajectory of
the overall dynamics. Obviously, such a trajectory is not
easily perceivable by the reactor operator. Due to the unique
structure of the xenon oscillation problem, adaptive features
are not addressed. The controller uses calculated values for
xenon and iodine concentrations or their corresponding
amplitudes. There are fast algorithms for such calculations
available in the literature [6]. In addition, the transient is
quite slow enabling the system engineers to update their
calculations. Unanticipated transients are automatically
reflected in the dynamic equilibrium part of the controller,
thus there is no need for an adaptive design for this purpose.
However, the design can easily be extended using aore
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Figure 5. Reactivity input in the upper core region.
Controller is turned on 30 minutes after the
perturbation.



o
O

C3

o

1
1

o
CNJCO

?°"

o

•'"

8
o

o
o

l.
C

O

o
GJ
X

Q
CO

x°

o
X"

o "

8
o

s
o.oo 0.20 0.40 0.50

T *3O2 (HOURS)
0.6D 1.00

Figure 6. Flux, xenon and iodine behavior in the
controlled plant (upper core region).
Controller is turned on 17 hours after the
perturbation.



(TV

o

CJ
do.as
<x

.

K
0.00 0.20

/ I

0.40 0.60
(HOURS)

0.80

CM

1/5

m
CM

CD
CO
i

nc
a.<x
j

1.00

Figure 7. Reactivity input in the upper core region.
Controller is turned on 17 hours after the
perturbation.



§

IFI!

0.00 °-i0 n'-ftooml1.20)
1.60

CD

en
o
ex.

vT

!M

2.00

IB)

o
o

c

O

X

x°

o

8

in
CM
CM

CD
CO

IV

CO

0 00 0.40 1.60 2.00

Figure 8. Xenon-iodine phase-plane graphs for
(a) uncontrolled plant, (b) controller
activated IV hours after the perturbation



sophisticated models and including the boron effect on the
dynamic equilibrium.
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