10 research outputs found

    Discovery of a nanodiamond-rich layer in the Greenland ice sheet

    Get PDF
    We report the discovery in the Greenland ice sheet of a discrete layer of free nanodiamonds (NDs) in very high abundances, implying most likely either an unprecedented influx of extraterrestrial (ET) material or a cosmic impact event that occurred after the last glacial episode. From that layer, we extracted n-diamonds and hexagonal diamonds (lonsdaleite), an accepted ET impact indicator, at abundances of up to about 5!106 times background levels in adjacent younger and older ice. The NDs in the concentrated layer are rounded, suggesting they most likely formed during a cosmic impact through some process similar to carbon-vapor deposition or high-explosive detonation. This morphology has not been reported previously in cosmic material, but has been observed in terrestrial impact material. This is the first highly enriched, discrete layer of NDs observed in glacial ice anywhere, and its presence indicates that ice caps are important archives of ET events of varying magnitudes. Using a preliminary ice chronology based on oxygen isotopes and dust stratigraphy, the ND-rich layer appears to be coeval with ND abundance peaks reported at numerous North American sites in a sedimentary layer, the Younger Dryas boundary layer (YDB), dating to 12.9 0.1 ka. However, more investigation is needed to confirm this association

    Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments

    Get PDF
    Part 1 of this study investigated evidence of biomass burning in global ice records, and here we continue to test the hypothesis that an impact event at the Younger Dryas boundary (YDB) caused an anomalously intense episode of biomass burning at ∼12.8 ka on a multicontinental scale (North and South America, Europe, and Asia). Quantitative analyses of charcoal and soot records from 152 lakes, marine cores, and terrestrial sequences reveal a major peak in biomass burning at the Younger Dryas (YD) onset that appears to be the highest during the latest Quaternary. For the Cretaceous-Tertiary boundary (K-Pg) impact event, concentrations of soot were previously utilized to estimate the global amount of biomass burned, and similar measurements suggest that wildfires at the YD onset rapidly consumed ∼10 million km2 of Earth’s surface, or ∼9% of Earth’s biomass, considerably more than for the K-Pg impact. Bayesian analyses and age regressions demonstrate that ages for YDB peaks in charcoal and soot across four continents are synchronous with the ages of an abundance peak in platinum in the Greenland Ice Sheet Project 2 (GISP2) ice core and of the YDB impact event (12,835–12,735 cal BP). Thus, existing evidence indicates that the YDB impact event caused an anomalously large episode of biomass burning, resulting in extensive atmospheric soot/dust loading that triggered an “impact winter.” This, in turn, triggered abrupt YD cooling and other climate changes, reinforced by climatic feedback mechanisms, including Arctic sea ice expansion, rerouting of North American continental runoff, and subsequent ocean circulation changes

    1982 Selected Bibliography

    No full text

    Annual Selected Bibliography

    No full text

    1984 Selected Bibliography

    No full text

    Annual Selected Bibliography

    No full text
    corecore