100 research outputs found

    Banking and the Limits of Professionalism

    Full text link
    A primary question is whether banking could become a profession. The business terrain of finance is the most hazardous on which to establish the practices of profession.. We start from the position that whether banking is, or might become, a profession is not obvious, for a number of reasons. The first is the intense government regulation which is generally the primary mode of securing the benefits of banking and limiting its undesirable effects. External regulation tends be regarded as a definitional and practical threat to the self-regulation that marks out traditional professionalism. Second, traditional professional logic is said to promote as one of its distinguishing features a contrast with, and at least to some extent, a corrective to the world of business, a world ‘dominated by large bureaucratic organizations, competitive markets, managerial control, deskilling or dehumanizing tendencies and a markedly for-profit logic’. Meanwhile, some bankers perceive this aggressive for-profit orientation as essential and a justification against change. Evidence to the Inquiry included the view of a senior banker that: ‘Banking is a strictly profit-making business, and is not, and never has been, a profession in the sense that, say, medicine or law is’

    High temporal resolution sampling reveals reef fish settlement is highly clustered

    Get PDF
    Coral reef fish larvae settle on reefs predominantly at night around the new-moon phase, after an early developmental period spent in the pelagic environment. Most sampling is conducted across whole nights, and any studies that have examined the frequency of arrival within nights have typically been limited to coarse sampling time scales of 1–5 h. Here, we present results for arrival numbers of fish caught between dusk and midnight from light traps sampled every 15 min at an Indonesian coral reef, providing the finest temporal resolution for this type of study to date. A spatial analysis by distance indices analysis, adapted to temporal data, revealed clustering of reef arrival times for many species, with an increase in catches immediately after dusk dropping off towards midnight. Importantly, the timing of clusters differed among species, indicating that different factors determine the timing of arrival among taxa. Our results support the hypothesis that larval behaviour influences the timing of arrival at a coral reef for different fish species

    ccTSA: A Coverage-Centric Threaded Sequence Assembler

    Get PDF
    De novo sequencing, a process to find the whole genome or the regions of a species without references, requires much higher computational power compared to mapped sequencing with references. The advent and continuous evolution of next-generation sequencing technologies further stress the demands of high-throughput processing of myriads of short DNA fragments. Recently announced sequence assemblers, such as Velvet, SOAPdenovo, and ABySS, all exploit parallelism to meet these computational demands since contemporary computer systems primarily rely on scaling the number of computing cores to improve performance. However, most of them are not tailored to exploit the full potential of these systems, leading to suboptimal performance. In this paper, we present ccTSA, a parallel sequence assembler that utilizes coverage to prune k-mers, find preferred edges, and resolve conflicts in preferred edges between k-mers. We minimize computation dependencies between threads to effectively parallelize k-mer processing. We also judiciously allocate and reuse memory space in order to lower memory usage and further improve sequencing speed. The results of ccTSA are compelling such that it runs several times faster than other assemblers while providing comparable quality values such as N50

    Assembly complexity of prokaryotic genomes using short reads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes.</p> <p>Results</p> <p>We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for <it>de novo </it>reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).</p> <p>Conclusions</p> <p>Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed.</p

    Inside the Outbreak of the 2009 Influenza A (H1N1)v Virus in Mexico

    Get PDF
    Influenza viruses pose a threat to human health because of their potential to cause global disease. Between mid March and mid April a pandemic influenza A virus emerged in Mexico. This report details 202 cases of infection of humans with the 2009 influenza A virus (H1N1)v which occurred in Mexico City as well as the spread of the virus throughout the entire country.From May 1st to May 5th nasopharyngeal swabs, derived from 751 patients, were collected at 220 outpatient clinics and 28 hospitals distributed throughout Mexico City. Analysis of samples using real time RT-PCR revealed that 202 patients out of the 751 subjects (26.9%) were confirmed to be infected with the new virus. All confirmed cases of human infection with the strain influenza (H1N1)v suffered respiratory symptoms. The greatest number of confirmed cases during the outbreak of the 2009 influenza A (H1N1)v were seen in neighbourhoods on the northeast side of Mexico City including Iztapalapa, Gustavo A. Madero, Iztacalco, and Tlahuac which are the most populated areas in Mexico City. Using these data, together with data reported by the Mexican Secretariat of Health (MSH) to date, we plot the course of influenza (H1N1)v activity throughout Mexico.Our data, which is backed up by MSH data, show that the greatest numbers of the 2009 influenza A (H1N1) cases were seen in the most populated areas. We speculate on conditions in Mexico which may have sparked this flu pandemic, the first in 41 years. We accept the hypothesis that high population density and a mass gathering which took in Iztapalapa contributed to the rapid spread of the disease which developed in three peaks of activity throughout the Country

    From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    Get PDF
    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating surveillance, research and commercial work with this virus, and maintaining a registry of all influenza isolates

    Evolutionary Dynamics of Complete Campylobacter Pan-Genomes and the Bacterial Species Concept

    Get PDF
    Defining bacterial species and understanding the relative cohesiveness of different components of their genomes remains a fundamental problem in microbiology. Bacterial species tend to be comprised of both a set of core and dispensable genes, with the sum of these two components forming the species pan-genome. The role of the core and dispensable genes in defining bacterial species and the question of whether pan-genomes are finite or infinite remain unclear. Here we demonstrate, through the analysis of 96 genome sequences derived from two closely related sympatric sister species of pathogenic bacteria (Campylobacter coli and C. jejuni), that their pan-genome is indeed finite and that there are unique and cohesive features to each of their genomes defining their genomic identity. The two species have a similar pan-genome size; however, C. coli has acquired a larger core genome and each species has evolved a number of species-specific core genes, possibly reflecting different adaptive strategies. Genome-wide assessment of the level of lateral gene transfer within and between the two sister species, as well as within the core and non-core genes, demonstrates a resistance to interspecies recombination in the core genome of the two species and therefore provides persuasive support for the core genome hypothesis for bacterial species

    Seasonal influence of drifting seaweeds on the structure of fish assemblages on the eastern equatorial Brazilian coast

    Get PDF
    Abstract The present study compared fish assemblages in two adjacent areas, one with drifting algae (A) and another without it (WA), in order to assess seasonal changes in diversity and composition. Both areas were located in São Cristóvão beach, Rio Grande do Norte state, on the semi-arid North-Northeastern coast of Brazil. A total of 4988 individuals were caught, the most species-rich families being Scianidae, Ariidae, Engraulidae and Carangidae. Species richness and abundance were slightly higher in site A, but diversity and evenness were higher in site WA. However, with the exception of evenness, such differences were not significant at any time during the study. Species composition was also similar between the two sites over the year. Nevertheless, in spite of the similarities, seasonal changes of environmental conditions, particularly rainfall, seemed to influence fish assemblages differently in the two areas. This may have led to changes in assemblage structure, causing the differentiation of the communities in the dry season. The present study presents evidence that fish assemblages in habitats with and without drifting seaweeds are not static and may become more similar or different, depending on the environmental conditions, suggesting that there is a complex relationship between primary productivity, trophic level and the structure of fish assemblages

    Protein Networks as Logic Functions in Development and Cancer

    Get PDF
    Many biological and clinical outcomes are based not on single proteins, but on modules of proteins embedded in protein networks. A fundamental question is how the proteins within each module contribute to the overall module activity. Here, we study the modules underlying three representative biological programs related to tissue development, breast cancer metastasis, or progression of brain cancer, respectively. For each case we apply a new method, called Network-Guided Forests, to identify predictive modules together with logic functions which tie the activity of each module to the activity of its component genes. The resulting modules implement a diverse repertoire of decision logic which cannot be captured using the simple approximations suggested in previous work such as gene summation or subtraction. We show that in cancer, certain combinations of oncogenes and tumor suppressors exert competing forces on the system, suggesting that medical genetics should move beyond cataloguing individual cancer genes to cataloguing their combinatorial logic

    Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

    Get PDF
    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5′ and 3′ RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen
    corecore